Dual Roles of Co 2 (CO) 8 Enable Carbonylative Ring Expansion of Thietane under Ambient CO Pressure

2021 ◽  
Vol 6 (48) ◽  
pp. 13964-13968
Author(s):  
Junwei Zheng ◽  
Linli Zhang ◽  
Chaoren Shen ◽  
Kaiwu Dong
Keyword(s):  
2017 ◽  
Vol 13 (1) ◽  
pp. 4486-4494 ◽  
Author(s):  
G.El Damrawi ◽  
F. Gharghar

Cerium oxide in borate glasses of composition xCeO2·(50 − x)PbO·50B2O3 plays an important role in changing both microstructure and magnetic behaviors of the system. The structural role of CeO2 as an effective agent for cluster and crystal formation in borate network is clearly evidenced by XRD technique. Both structure and size of well-formed cerium separated clusters have an effective influence on the structural properties. The cluster aggregations are documented to be found in different range ordered structures, intermediate and long range orders are the most structures in which cerium phases are involved. The nano-sized crystallized cerium species in lead borate phase are evidenced to have magnetic behavior.  The criteria of building new specific borate phase enriched with cerium as ferrimagnetism has been found to keep the magnetization in large scale even at extremely high temperature. Treating the glass thermally or exposing it to an effective dose of ionized radiation is evidenced to have an essential change in magnetic properties. Thermal heat treatment for some of investigated materials is observed to play dual roles in the glass matrix. It can not only enhance alignment processes of the magnetic moment but also increases the capacity of the crystallite species in the magnetic phases. On the other hand, reverse processes are remarked under the effect of irradiation. The magnetization was found to be lowered, since several types of the trap centers which are regarded as defective states can be produced by effect of ionized radiation. 


2020 ◽  
Author(s):  
Nathan O'Brien ◽  
Naokazu Kano ◽  
Nizam Havare ◽  
Ryohei Uematsu ◽  
Romain Ramozzi ◽  
...  

<div>The isolation and reactivities of two pentacoordinated phosphorus–tetracoordinated boron bonded compounds were</div><div>explored. A strong Lewis acidic boron reagent and electron-withdrawing ligand system were required to form the</div><div>pentacoordinated phosphorus state of the P–B bond. The first compound, a phosphoranyl-trihydroborate, gave a THF</div><div>stabilised phosphoranyl-borane intermediate upon a single hydride abstraction in THF. This compound could undergo a</div><div>unique rearrangement reaction, that involved a two-fold ring expansion, to give an unusual fused bicyclic compound or it</div><div>could act as a mono-hydroboration reagent. The hydroboration reactivity of the intermediate was found to be more reactive</div><div>towards alkynes over alkenes with good to moderate regioselectivity towards the terminal carbon. The second compound,</div><div>a phosphoranyl-triarylborate, was found to have a vastly different reactivity to the trihydroborate as it was highly stable</div><div>towards acids and bases. This is thought to be due to the large bulk around the P–B bond as shown in the crystal structure</div>


Author(s):  
Hannah E. Burdge ◽  
Takuya Oguma ◽  
Takahiro Kawajiri ◽  
Ryan Shenvi

<div><div><div><p>The first synthesis of GB22 was accomplished by a con- cise, modular route. Two building blocks converged in a novel sp3-sp2 attached-ring coupling that used Ir/Ni dual-catalysis to reverse the regioselectivity of siloxycy- clopropane arylation. This cross-coupling proved general to access β-substituted tetralones via ring-expansion of indanone-derived siloxycyclopropanes. The congested, bridging rings of the GB alkaloids were completed using an aluminum-HFIP complex that effected intramolecular cyclization of an acid-labile substrate.</p></div></div></div>


2019 ◽  
Author(s):  
Hannah E. Burdge ◽  
Takuya Oguma ◽  
Takahiro Kawajiri ◽  
Ryan Shenvi

<div><div><div><p>The first synthesis of GB22 was accomplished by a con- cise, modular route. Two building blocks converged in a novel sp3-sp2 attached-ring coupling that used Ir/Ni dual-catalysis to reverse the regioselectivity of siloxycy- clopropane arylation. This cross-coupling proved general to access β-substituted tetralones via ring-expansion of indanone-derived siloxycyclopropanes. The congested, bridging rings of the GB alkaloids were completed using an aluminum-HFIP complex that effected intramolecular cyclization of an acid-labile substrate.</p></div></div></div>


2018 ◽  
Vol 42 (1) ◽  
pp. 35-63
Author(s):  
Sang Ho Lee ◽  
Hea Won Koh ◽  
Nyamochir Tuya ◽  
Kyung Ho Choi

Sign in / Sign up

Export Citation Format

Share Document