Microfluidic Size Exclusion Chromatography (μSEC) for Extracellular Vesicles and Plasma Protein Separation

Small ◽  
2022 ◽  
pp. 2104470
Author(s):  
Sheng Yuan Leong ◽  
Hong Boon Ong ◽  
Hui Min Tay ◽  
Fang Kong ◽  
Megha Upadya ◽  
...  
2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Ana Gámez-Valero ◽  
Marta Monguió-Tortajada ◽  
Laura Carreras-Planella ◽  
Marcel·la Franquesa ◽  
Katrin Beyer ◽  
...  

Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3156
Author(s):  
Daniel S. K. Liu ◽  
Flora M. Upton ◽  
Eleanor Rees ◽  
Christopher Limb ◽  
Long R. Jiao ◽  
...  

Cancer cells release extracellular vesicles, which are a rich target for biomarker discovery and provide a promising mechanism for liquid biopsy. Size-exclusion chromatography (SEC) is an increasingly popular technique, which has been rediscovered for the purposes of extracellular vesicle (EV) isolation and purification from diverse biofluids. A systematic review was undertaken to identify all papers that described size exclusion as their primary EV isolation method in cancer research. In all, 37 papers were identified and discussed, which showcases the breadth of applications in which EVs can be utilised, from proteomics, to RNA, and through to functionality. A range of different methods are highlighted, with Sepharose-based techniques predominating. EVs isolated using SEC are able to identify cancer cells, highlight active pathways in tumourigenesis, clinically distinguish cohorts, and remain functionally active for further experiments.


2015 ◽  
Vol 4 (1) ◽  
pp. 27369 ◽  
Author(s):  
Inés Lozano-Ramos ◽  
Ioana Bancu ◽  
Anna Oliveira-Tercero ◽  
María Pilar Armengol ◽  
Armando Menezes-Neto ◽  
...  

Viruses ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2272
Author(s):  
Hussein Kaddour ◽  
Malik Tranquille ◽  
Chioma M. Okeoma

Extracellular vesicles (EVs) are cell-derived membranous particles secreted by all cell types (including virus infected and uninfected cells) into the extracellular milieu. EVs carry, protect, and transport a wide array of bioactive cargoes to recipient/target cells. EVs regulate physiological and pathophysiological processes in recipient cells and are important in therapeutics/drug delivery. Despite these great attributes of EVs, an efficient protocol for EV separation from biofluids is lacking. Numerous techniques have been adapted for the separation of EVs with size exclusion chromatography (SEC)-based methods being the most promising. Here, we review the SEC protocols used for EV separation, and discuss opportunities for significant improvements, such as the development of novel particle purification liquid chromatography (PPLC) system capable of tandem purification and characterization of biological and synthetic particles with near-single vesicle resolution. Finally, we identify future perspectives and current issues to make PPLC a tool capable of providing a unified, automated, adaptable, yet simple and affordable particle separation resource.


Sign in / Sign up

Export Citation Format

Share Document