Experimental research on the seismic properties of shear wall reinforced with high‐strength bars and magnetorheological dampers

Author(s):  
Jun Zhao ◽  
Yi Zhao ◽  
Xiaohui Ruan ◽  
Xinglong Gong ◽  
Xiangcheng Zhang
2021 ◽  
Vol 162 ◽  
pp. 107584
Author(s):  
Wenying Zhang ◽  
Xiangzhi Xu ◽  
Yang Liu ◽  
Cheng Yu ◽  
Xuechun Liu ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-18
Author(s):  
Min Gan ◽  
Yu Yu ◽  
Liren Li ◽  
Xisheng Lu

Four test pieces with different steel plate center-to-center distances and reinforcement ratios are subjected to low-cycle repeat quasistatic loading to optimize properties as failure mode, hysteretic curve, skeleton curve, energy dissipation parameters, strength parameters, and seismic performance of high-strength concrete low-rise shear walls. The embedded steel plates are shown to effectively restrict wall crack propagation, enhance the overall steel ratio, and improve the failure mode of the wall while reducing the degree of brittle failure. Under the same conditions, increasing the spacing between the steel plates in the steel plate concrete shear wall can effectively preserve the horizontal bearing capacity of the shear wall under an ultimate load. The embedded steel plates perform better than concealed bracing in delaying stiffness degeneration in the low-rise shear walls, thus safeguarding their long-term bearing capacity. The results presented here may provide a workable basis for shear wall design optimization.


2018 ◽  
Vol 931 ◽  
pp. 232-237 ◽  
Author(s):  
Aleksei E. Polikutin ◽  
Yuri B. Potapov ◽  
Artem V. Levchenko

The article describes experimental research of bending rubber fiber concrete elements with favorable deformation-strength characteristics. The use of such a material as fiberrubcon in load-bearing structures due to its high strength leads to a decrease in material consumption and weight of structures.


2018 ◽  
Vol 4 (11) ◽  
pp. 2667
Author(s):  
Hayder Fadhil ◽  
Amer Ibrahim ◽  
Mohammed Mahmood

Corrugated steel plate shear wall (CSPSW) is one of the lateral resistance systems which consists mainly of steel frame (beam and column) with vertical or horizontal corrugated steel plate connected to the frame by weld, bolts or both. This type of steel shear wall characterized by low cost and short construction time with high strength, ductility, initial stiffness and excellent ability to dissipate energy. The aim of this paper is to evaluate the effect of corrugation angle and its direction on the performance of CSPSW under cyclic loading. The Finite element analysis was employed to achieve the research aim. The FE models were validated with experimental data available in the literature. Results reveal that the corrugation angle has a clear influence on initial stiffness, strength, ductility, and energy dissipation of CSPSW. The optimum performance of CSPSW can be obtained with angles of 30o for CSPSW with vertical corrugation and 20o for CSPSW with horizontal corrugation. The use of CSPSW with vertical corrugation provides higher strength, stiffness, and ductility compared to CSPSW with horizontal corrugation. Therefore, it is recommended to use CSPSW with vertical corrugation.


Author(s):  
Nima Aghniaey ◽  
Murat Saatcioglu ◽  
Hassan Aoude

Research on seismic behaviour of shear walls with high-strength steel is limited. A combined experimental and analytical investigation was conducted to assess seismic behaviour of flexure-dominant shear walls. A large-scale concrete shear wall with Grade 690 MPa (ASTM A1035) reinforcement and 84 MPa concrete was tested under simulated seismic loading. The wall was a ¼ -scale of a 6-storey shear wall, with 4.53 m height and 1.45 m length. It sustained a lateral drift of 1.8% prior to developing failure due to the rupturing of longitudinal reinforcement. This is 35% less than the drift capacity of a companion wall reinforced with 400 MPa reinforcement tested earlier. VecTor2 software was used to conduct an analytical parametric study to expand the experimental findings. The results indicate that the reinforcement grade has a significant impact on strength, ductility and hysteretic behaviour of shear walls.


Sign in / Sign up

Export Citation Format

Share Document