Mechanisms of acrolein induces toxicity in human umbilical vein endothelial cells: Oxidative stress, DNA damage response, and apoptosis

2021 ◽  
Author(s):  
Dan Liu ◽  
Ye Cheng ◽  
Xueying Mei ◽  
Yanzhen Xie ◽  
Zhipeng Tang ◽  
...  
2013 ◽  
Vol 33 (6) ◽  
pp. 590-601 ◽  
Author(s):  
J-H Chiang ◽  
J-S Yang ◽  
C-C Lu ◽  
M-J Hour ◽  
K-C Liu ◽  
...  

The present study aims to explore the mechanism of quinazolinone analogue HMJ-38-induced DNA damage in endothelial cells in vitro. We attempt to evaluate the antiangiogenetic response utilizing human umbilical vein endothelial cells (HUVECs). Herein, the results demonstrated that HMJ-38 incubation triggered DNA damage behavior and showed a longer DNA migration in HUVECs based on the comet assay and the analysis of DNA agarose gel electrophoresis to contact DNA smears. We further gained to determine a marker of DNA double strand breaks, phosphorylated histone H2A.X (Ser139) (γH2A.X), in HMJ-38-treated HUVECs by flow cytometry and Western blotting assay. We consider that HMJ-38 has caused an increase in γH2A.X, and DNA damage seemed to mediate through DNA-dependent serine/threonine protein kinase (DNA-PK) binding to Ku70/Ku80 as well as advanced activated p-Akt (Ser473) and stimulated phosphorylated glycogen synthase kinase-3β (p-GSK-3β) conditions in HUVECs. Importantly, the effect of above DNA damage response was prevented by N-acetyl-l-cysteine (a reactive oxygen species scavenger), and NU7026 (a DNA-PK inhibitor) could attenuate DNA-PK catalytic subunit and phosphorylation of H2A.X on Ser139 expression in comparison with HMJ-38 alone treated HUVECs. Therefore, HMJ-38-provoked DNA damage stress in HUVECs probably led to the activation of γH2A.X/DNA-PK/GSK-3β signaling. In summary, our novel finding provides more information addressing the pharmacological approach of newly synthesized HMJ-38 for further development and therapeutic application in antiangiogenetic effect of cancer chemotherapy.


Marine Drugs ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 86
Author(s):  
Yunok Oh ◽  
Chang-Bum Ahn ◽  
Jae-Young Je

Oxidative stress-induced endothelial dysfunction is strongly linked to the pathogenesis of cardiovascular diseases. A previous study revealed that seahorse hydrolysates ameliorated oxidative stress-mediated human umbilical vein endothelial cells (HUVECs) injury. However, the responsible compounds have not yet been identified. This study aimed to identify cytoprotective peptides and to investigate the molecular mechanism underlying the cytoprotective role in H2O2-induced HUVECs injury. After purification by gel filtration and HPLC, two peptides were sequenced by liquid chromatography-tandem mass spectrometry as HGSH (436.43 Da) and KGPSW (573.65 Da). The synthesized peptides and their combination (1:1 ratio) showed significant HUVECs protection effect at 100 μg/mL against H2O2-induced oxidative damage via significantly reducing intracellular reactive oxygen species (ROS). Two peptides and their combination treatment resulted in the increased heme oxygenase-1 (HO-1), a phase II detoxifying enzyme, through the activation of nuclear transcription factor-erythroid 2-related factor (Nrf2). Additionally, cell cycle and nuclear staining analysis revealed that two peptides and their combination significantly protected H2O2-induced cell death through antiapoptotic action. Two peptides and their combination treatment led to inhibit the expression of proapoptotic Bax, the release of cytochrome C into the cytosol, the activation of caspase 3 by H2O2 treatment in HUVECs, whereas antiapoptotic Bcl-2 expression was increased with concomitant downregulation of Bax/Bcl-2 ratio. Taken together, these results suggest that seahorse-derived peptides may be a promising agent for oxidative stress-related cardiovascular diseases.


2007 ◽  
Vol 566 (1-3) ◽  
pp. 1-10 ◽  
Author(s):  
Hiroshi Tsuneki ◽  
Naoto Sekizaki ◽  
Takashi Suzuki ◽  
Shinjiro Kobayashi ◽  
Tsutomu Wada ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Jipeng Ouyang ◽  
Rong Li ◽  
Haiqin Shi ◽  
Jianping Zhong

Migraine is a prevalent neurological disorder which causes a huge economic burden on society. It is thought to be a neurovascular disease with oxidative stress might be involved. Curcumin, one of the major ingredients of turmeric, has potent antioxidative and anti-inflammatory properties, but whether it could be used as a potential treatment for migraine remains to be explored. In the present study, human umbilical vein endothelial cells (HUVECs) were pretreated with various concentrations of curcumin (0 μM, 10 μM, 20 μM, 30 μM, 40 μM, and 50 μM) for 12 h, thereby exposed to H2O2 (100 μM) for another 12 h. The viability of HUVECs was tested by the CCK-8 assay, and the activities of antioxidant enzymes including superoxide dismutase (SOD) and glutathione (GSH) were also examined. Intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) were assayed to determine H2O2-induced oxidative stress. In addition, several cell death-related genes (p53, p21, Bax, and Bcl-2) were detected by PCR, and an apoptosis-related protein (caspase3) was evaluated by western blotting. Our results showed that curcumin improved the H2O2-induced decrease of cell viability and antioxidative enzyme activities and decreased the level of oxidative stress. As a conclusion, curcumin could mitigate H2O2-induced oxidative stress and cell death in HUVECs and may be a potential therapeutic drug for migraine.


Sign in / Sign up

Export Citation Format

Share Document