A COMBINED TUNED ABSORBER AND PENDULUM IMPACT DAMPER UNDER RANDOM EXCITATION

1998 ◽  
Vol 216 (2) ◽  
pp. 199-213 ◽  
Author(s):  
F.S. Collette

1990 ◽  
pp. 113-124
Author(s):  
George Sy CHUA ◽  
Benito M. PACHECO ◽  
Yozo FUJINO ◽  
Manabu ITO


1996 ◽  
Vol 118 (4) ◽  
pp. 614-621 ◽  
Author(s):  
A. Papalou ◽  
S. F. Masri

An experimental and analytical study is made of the performance of particle dampers under wide-band random excitation. A small model, provided with a nonlinear auxiliary mass damper, was used to investigate the major system parameters that influence the performance of particle dampers: total auxiliary mass ratio, particle size, container dimension, and the intensity and direction of the excitation. It is shown that properly designed particle dampers, even with a relatively small mass ratio, can considerably reduce the response of lightly damped structures. An approximate analytical solution, which is based on the concept of an equivalent single unit-impact damper, is presented. It is shown that the approximate solution can provide an adequate estimate of the root-mean-square response of the randomly excited primary system when provided with a particle damper that is operating in the vicinity of its optimum range of parameters.



2020 ◽  
pp. 107754632092562
Author(s):  
Zheng Lu ◽  
Naiyin Ma ◽  
Hengrui Zhang

In this article, the vibration control effect of the multiunit impact damper under stationary random excitation and seismic excitation is studied, based on both the elastic and nonlinear benchmark structures. The benchmark structure is a nonlinear steel frame structure, which can calculate the nonlinear response by considering the material nonlinearity at the ends of the beam and column. To analyze the influence of various system parameters on the performance of the multiunit impact damper, such as the number of units, mass ratio, damping ratio, and gap clearance, a great number of parameter studies are carried out. In addition, the control effects of the multiunit impact damper on elastic and nonlinear structures are compared to analyze the influence of structural nonlinearity on the performance of the multiunit impact damper. The results show that a lightweight multiunit impact damper with reasonable parameters can significantly reduce the root mean square displacement response of the benchmark structure. Furthermore, the structural nonlinearity will lead to a decrease in the vibration control performance of the multiunit impact damper. The reasons for this phenomenon are that the effective momentum exchange and energy dissipation of the multiunit impact damper will decrease when the benchmark structure responds in a nonlinear state.



1973 ◽  
Vol 53 (1) ◽  
pp. 200-211 ◽  
Author(s):  
S. F. Masri ◽  
A. M. Ibrahim




Sign in / Sign up

Export Citation Format

Share Document