Speleothem Evidence for Changes in Indian Summer Monsoon Precipitation over the Last ∼2300 Years

2000 ◽  
Vol 53 (2) ◽  
pp. 196-202 ◽  
Author(s):  
Rhawn F. Denniston ◽  
Luis A. González ◽  
Yemane Asmerom ◽  
Ram H. Sharma ◽  
Mark K. Reagan

AbstractSpeleothems from a well-ventilated dolomitic cave in the Pokhara Valley, central Nepal, preserve a mineralogic record of Indian summer monsoon variability over the past 2300 yr. Annually deposited aragonite layers formed between 2300 and 1500 yr B.P., indicating reduced monsoon precipitation and increased cave aridity, whereas alternating calcite/aragonite laminae deposited after 1500 yr B.P. record elevated summer monsoon precipitation and increased cave humidity. Dense, optically clear calcite layers deposited from 450 ± 5 to 360 ± 20 yr B.P. (1550 to 1640 A.D.) indicate a less-evaporative cave environment and suggest moister and/or cooler conditions, possibly related to climatic change associated with the onset of the Little Ice Age.

2018 ◽  
Author(s):  
Charan Teja Tejavath ◽  
Karumuri Ashok ◽  
Supriyo Chakraborty ◽  
Rengaswamy Ramesh

Abstract. Using seven model simulations from the PMIP3, we study the mean summer (June–September) climate and its variability in India during the Last Millennium (LM; CE 850–1849) with emphasis on the Medieval Warm Period (MWP) and Little Ice Age (LIA), after validation of the simulated current day climate and trends. We find that the above (below) LM-mean summer global temperatures during the MWP (LIA) are associated with relatively higher (lower) number of concurrent El Niños as compared to La Niñas. The models simulate higher (lower) Indian summer monsoon rainfall (ISMR) during the MWP (LIA). This is notwithstanding a strong simulated negative correlation between the timeseries of NINO3.4 index and that of the area-averaged ISMR, Interestingly, the percentage of strong El Niños (La Niñas) causing negative (positive) ISMR anomalies is higher in the LIA (MWP), a non-linearity that apparently is important for causing higher ISMR in the MWP. Distribution of simulated boreal summer velocity potential at 850 hPa during MWP in models, in general, shows a zone of anomalous convergence in the central tropical Pacific flanked by two zones of divergence, suggesting a westward shift in the Walker circulation as compared to the simulations for LM as well as and a majority of historical simulations, and current day observed signal. The anomalous divergence centre in the west also extends into the equatorial eastern Indian Ocean, resulting in an anomalous convergence zone over India and therefore excess rainfall during the MWP as compared to the LM; the results are qualitative, given the inter-model spread.


2021 ◽  
Author(s):  
Shah Parth ◽  
James M Russell ◽  
Nicolas Waldmann

<p>There is a major knowledge gap in the past climate oscillation of the Arabian desert, especially during the past two millennium. Reliable continuous continental records that archives at high resolution past environmental variability are useful sentinels of paleoclimate changes. Reliable interpretation from climatic proxies retrieved from lake records are crucial for identifying periodicities and the onset of climatic events and evaluating inter-annual and decadal trends driven by shifting of the Intertropical Convergence Zone (ITCZ). A multiproxy approach is presented for a ~3.3 m composite core from a karst lake located in Gayal el Bazal, southern Yemen. Sedimentary proxies, including grain size distribution and magnetic susceptibility (MS) coupled with geochemistry (XRF), provide an initial picture of centennial-scale environmental changes over the southern Arabian desert. The chronology of the core was anchored by five radiocarbon (<sup>14</sup>C) dates of terrestrial plants (wood) extracted from sediment samples and indicates the core extends to ~800 AD. Our data provides a snapshot for better understanding the impact of Indian Ocean monsoon variability at an exceptional resolution for a region that lacks sufficient information. Our data indicates that during the ‘Little Ice Age’ (~1500-1800 AD) was arid relative to the warm conditions that prevailed during the Medieval Warming Period (~800 to 1200 AD). The arid phase was marked by high Ca/(Al, Fe, Ti) values, increased inorganic carbon content, decreased MS values, and gypsum precipitation. Furthermore, end-member mixing analyses (EMMA) derived from the grain-size distribution corroborates the production of carbonate sand probably due to an increase in flash floods occurring concurrently with low lake levels under generally dry conditions. Aridity during the Little Ice Age is consistent with evidence and theory for weakened boreal summer monsoons during intervals of northern hemisphere cooling. Overall, this study will provide insight into the monsoon variability and a record for understanding the interactions between northward migrations of the ITCZ and tropical monsoonal dynamics during the late Holocene. In the context of current climate change and increasing population pressure, a deeper understanding of their long-term hydrological variability, this study is highly essential to satisfactorily forecast the sustainability of lakes as a resource in a warming world.</p>


2016 ◽  
Author(s):  
Melanie Perello ◽  
◽  
Broxton W. Bird ◽  
Yanbin Lei ◽  
Pratigya J. Polissar ◽  
...  

2018 ◽  
Vol 45 (15) ◽  
pp. 7711-7718 ◽  
Author(s):  
Richard Ching Wa Cheung ◽  
Moriaki Yasuhara ◽  
Briony Mamo ◽  
Kota Katsuki ◽  
Koji Seto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document