scholarly journals BDD vs. Constraint-Based Model Checking: An Experimental Evaluation for Asynchronous Concurrent Systems

Author(s):  
Tevfik Bultan
2017 ◽  
pp. 377-406
Author(s):  
Ivan Cibrario Bertolotti ◽  
Tingting Hu

10.29007/7lrd ◽  
2018 ◽  
Author(s):  
Ian Cassar ◽  
Adrian Francalanza ◽  
Duncan Attard ◽  
Luca Aceto ◽  
Anna Ingolfsdottir

Ensuring formal correctness for actor-based, concurrent systems is a difficult task, pri- marily because exhaustive, static analysis verification techniques such as model checking quickly run into state-explosion problems. Runtime monitoring techniques such as Run- time Verification and Adaptation circumvent this limitation by verifying the correctness of a program by dynamically analysing its executions. This paper gives an overview of a suite of monitoring tools available for verifying and adapting actor-based Erlang programs.


1993 ◽  
Vol 04 (01) ◽  
pp. 31-67 ◽  
Author(s):  
WOJCIECH PENCZEK

We investigate an extension of CTL (Computation Tree Logic) by past modalities, called CTL P, interpreted over Mazurkiewicz’s trace systems. The logic is powerful enough to express most of the partial order properties of distributed systems like serializability of database transactions, snapshots, parallel execution of program segments, or inevitability under concurrency fairness assumption. We show that the model checking problem for the logic is NP-hard, even if past modalities cannot be nested. Then, we give a one exponential time model checking algorithm for the logic without nested past modalities. We show that all the interesting partial order properties can be model checked using our algorithm. Next, we show that is is possible to extend the model checking algorithm to cover the whole language and its extension to [Formula: see text]. Finally, we prove that the logic is undecidable and we discuss consequences of our results on using propositional versions of partial order temporal logics to synthesis of concurrent systems from their specifications.


Author(s):  
NOURA BOUDIAF ◽  
FARID MOKHATI ◽  
MOURAD BADRI

Model Checking based verification techniques represent an important issue in the field of concurrent systems quality assurance. The lack of formal semantics in the existing formalisms describing multi-agents models combined with multi-agents systems complexity are sources of several problems during their development process. The Maude language, based on rewriting logic, offers a rich notation supporting formal specification and implementation of concurrent systems. In addition to its modeling capacity, the Maude environment integrates a Model Checker based on Linear Temporal Logic (LTL) for distributed systems verification. In this paper, we present a formal and generic framework (DIMA-Maude) supporting formal description and verification of DIMA multi-agents models.


Sign in / Sign up

Export Citation Format

Share Document