Itô stochastic integral. Itô formula. Tanaka formula

Author(s):  
Dmytro Gusak ◽  
Alexander Kukush ◽  
Alexey Kulik ◽  
Yuliya Mishura ◽  
Andrey Pilipenko
Author(s):  
Tomas Björk

We introduce the Wiener process, the Itô stochastic integral, and derive the Itô formula. The connection with martingale theory is discussed, and there are several worked-out examples


2018 ◽  
Vol 18 (04) ◽  
pp. 1850030 ◽  
Author(s):  
Yuri F. Saporito

The functional Itô formula, firstly introduced by Bruno Dupire for continuous semimartingales, might be extended in two directions: different dynamics for the underlying process and/or weaker assumptions on the regularity of the functional. In this paper, we pursue the former type by proving the functional version of the Meyer–Tanaka formula. Following the idea of the proof of the classical time-dependent Meyer–Tanaka formula, we study the mollification of functionals and its convergence properties. As an example, we study the running maximum and the max-martingales of Yor and Obłój.


2000 ◽  
Vol 7 (1) ◽  
pp. 155-168
Author(s):  
B. Mamporia

Abstract If (Wt ) t∈[ 0, 1] is a Wiener process in an arbitrary separable Banach space X, ψ : [0, 1] × X → Y is a continuous function with values in another separable Banach space, and ψ has continuous Frechet derivatives , and , then the Ito formula is obtained for ψ(t, Wt ). The method is based on the concept of covariance operator and a special construction of the Ito stochastic integral.


2012 ◽  
Vol 6 (4) ◽  
Author(s):  
Hui-Hsiung Kuo ◽  
Anuwat Sae-Tang ◽  
Benedykt Szozda

2002 ◽  
Vol 31 (8) ◽  
pp. 477-496
Author(s):  
Said Ngobi

The classical Itô formula is generalized to some anticipating processes. The processes we consider are in a Sobolev space which is a subset of the space of square integrable functions over a white noise space. The proof of the result uses white noise techniques.


2002 ◽  
Vol 124 (1) ◽  
pp. 73-99 ◽  
Author(s):  
Kimberly Kinateder ◽  
Patrick McDonald

Author(s):  
K. L. Chung ◽  
R. J. Williams
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document