Drug Screening Assays on Medulloblastoma Stem Cells Using Compound Libraries

Author(s):  
Ashutosh Singh ◽  
Neha Garg
2019 ◽  
Vol 22 (8) ◽  
pp. 509-520
Author(s):  
Cauê B. Scarim ◽  
Chung M. Chin

Background: In recent years, there has been an improvement in the in vitro and in vivo methodology for the screening of anti-chagasic compounds. Millions of compounds can now have their activity evaluated (in large compound libraries) by means of high throughput in vitro screening assays. Objective: Current approaches to drug discovery for Chagas disease. Method: This review article examines the contribution of these methodological advances in medicinal chemistry in the last four years, focusing on Trypanosoma cruzi infection, obtained from the PubMed, Web of Science, and Scopus databases. Results: Here, we have shown that the promise is increasing each year for more lead compounds for the development of a new drug against Chagas disease. Conclusion: There is increased optimism among those working with the objective to find new drug candidates for optimal treatments against Chagas disease.


Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 966
Author(s):  
Xv Zhang ◽  
Liling Tang ◽  
Qian Yi

The vasculature of stem-cell-derived liver organoids can be engineered using methods that recapitulate embryonic liver development. Hepatic organoids with a vascular network offer great application prospects for drug screening, disease modeling, and therapeutics. However, the application of stem cell-derived organoids is hindered by insufficient vascularization and maturation. Here, we review different theories about the origin of hepatic cells and the morphogenesis of hepatic vessels to provide potential approaches for organoid generation. We also review the main protocols for generating vascularized liver organoids from stem cells and consider their potential and limitations in the generation of vascularized liver organoids.


Author(s):  
Andrii Puzyrenko ◽  
Dan Wang ◽  
Randy Schneider ◽  
Greg Wallace ◽  
Sara Schreiber ◽  
...  

ABSTRACT This study investigated the presence of designer benzodiazepines in 35 urine specimens obtained from emergency department patients undergoing urine drug screening. All specimens showed apparent false-positive benzodiazepine screening results (i.e., confirmatory testing using a 19-component LC-MS/MS panel showed no prescribed benzodiazepines at detectable levels). The primary aims were to identify the possible presence of designer benzodiazepines, characterize the reactivity of commercially available screening immunoassays with designer benzodiazepines, and evaluate the risk of inappropriately ruling out designer benzodiazepine use when utilizing common urine drug screening and confirmatory tests. Specimens were obtained from emergency departments of a single US Health system. Following clinically ordered drug screening using Abbott ARCHITECT c assays and lab-developed LC-MS/MS confirmatory testing, additional characterization was performed for investigative purposes. Specifically, urine specimens were screened using two additional assays (Roche cobas c502, Siemens Dimension Vista) and LC-QTOF-MS to identify presumptively positive species, including benzodiazepines and non-benzodiazepines. Finally, targeted, qualitative LC-MS/MS was performed to confirm the presence of 12 designer benzodiazepines. Following benzodiazepine detection using the Abbott ARCHITECT, benzodiazepines were subsequently detected in 28/35 and 35/35 urine specimens, respectively, using Siemens and Roche assays. LC-QTOF-MS showed the presumptive presence of at least one non-FDA approved benzodiazepine in 30/35 specimens: flubromazolam (12/35), flualprazolam (11/35), flubromazepam (2/35), clonazolam (4/35), etizolam (9/35), metizolam (5/35), nitrazepam (1/35), and pyrazolam (1/35). Two or three designer benzodiazepines were detected concurrently in 13/35 specimens. Qualitative LC-MS/MS confirmed the presence of at least one designer benzodiazepine or metabolite in 23/35 specimens, with 3 specimens unavailable for confirmatory testing. Urine benzodiazepine screening assays from three manufacturers were cross-reactive with multiple non-US FDA-approved benzodiazepines. Clinical and forensic toxicology laboratories using traditionally designed LC-MS/MS panels may fail to confirm the presence of non-US FDA-approved benzodiazepines detected by screening assays, risking inappropriate interpretation of screening results as false-positives.


2020 ◽  
Author(s):  
Amar M. Singh ◽  
Liang Zhang ◽  
John Avery ◽  
Stephen Dalton

Abstract Beige adipocytes (also known as brite adipocytes) have significant utility for numerous applications, such as drug screening, cell therapy, and disease modelling. However, a high-efficiency protocol from human adult adipose-derived stem/stromal stem cells (ADSC) has not been described. The protocol described here achieves beige adipocyte purities of >92% in a fully-defined, serum-free media cocktail, which enables these downstream applications. This method provides a significant leap forward over previously described, serum-based protocols that were inconsistent and inefficient.


1976 ◽  
Vol 22 (6) ◽  
pp. 933-933 ◽  
Author(s):  
L P Hackett ◽  
L F Dusci

2005 ◽  
Vol 52 (3) ◽  
pp. 245-251 ◽  
Author(s):  
C ZUCCATO ◽  
M TARTARI ◽  
D GOFFREDO ◽  
E CATTANEO ◽  
D RIGAMONTI

Author(s):  
Michael E. Bregenzer ◽  
Ciara Davis ◽  
Eric N. Horst ◽  
Pooja Mehta ◽  
Caymen M. Novak ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document