Mechanical and Physical Properties of Several Advanced Metal-Matrix Composite Materials

1973 ◽  
pp. 175-183 ◽  
Author(s):  
J. L. Christian ◽  
M. D. Campbell
Alloy Digest ◽  
1997 ◽  
Vol 46 (11) ◽  

Abstract Lanxide 92-X-2050 is an aluminum-10 Silicon-1 Magnesium-1 Iron alloy with 30 vol.% of silicon carbide particulate. This metal-matrix composite is designed to outperform the unreinforced counterpart. The alloy-matrix composite is available as die castings. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fatigue. It also includes information on casting. Filing Code: AL-343. Producer or source: Lanxide Corporation.


2021 ◽  
Vol 11 (5) ◽  
pp. 2426
Author(s):  
Vladimir Promakhov ◽  
Alexey Matveev ◽  
Nikita Schulz ◽  
Mikhail Grigoriev ◽  
Andrey Olisov ◽  
...  

Currently, metal–matrix composite materials are some of the most promising types of materials, and they combine the advantages of a metal matrix and reinforcing particles/fibres. Within the framework of this article, the high-temperature synthesis of metal–matrix composite materials based on the (Ni-Ti)-TiB2 system was studied. The selected approaches make it possible to obtain composite materials of various compositions without contamination and with a high degree of energy efficiency during production processes. Combustion processes in the samples of a 63.5 wt.% NiB + 36.5 wt.% Ti mixture and the phase composition and structure of the synthesis products were researched. It has been established that the synthesis process in the samples proceeds via the spin combustion mechanism. It has been shown that self-propagating high-temperature synthesis (SHS) powder particles have a composite structure and consist of a Ni-Ti matrix and TiB2 reinforcement inclusions that are uniformly distributed inside it. The inclusion size lies in the range between 0.1 and 4 µm, and the average particle size is 0.57 µm. The obtained metal-matrix composite materials can be used in additive manufacturing technologies as ligatures for heat-resistant alloys, as well as for the synthesis of composites using traditional methods of powder metallurgy.


JOM ◽  
1985 ◽  
Vol 37 (6) ◽  
pp. 43-43 ◽  
Author(s):  
Jacques E. Schoutens

MICC 90 ◽  
1991 ◽  
pp. 24-37
Author(s):  
Nikolai P. Lyakishev ◽  
Ivan M. Kopiev

Sign in / Sign up

Export Citation Format

Share Document