Nonexistence Result for Wave Operators in Massive Relativistic System

Author(s):  
Atsuhide Ishida
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Víctor Hernández-Santamaría ◽  
Alberto Saldaña

Abstract We study existence and convergence properties of least-energy symmetric solutions (l.e.s.s.) to the pure critical exponent problem ( - Δ ) s ⁢ u s = | u s | 2 s ⋆ - 2 ⁢ u s , u s ∈ D 0 s ⁢ ( Ω ) ,  2 s ⋆ := 2 ⁢ N N - 2 ⁢ s , (-\Delta)^{s}u_{s}=\lvert u_{s}\rvert^{2_{s}^{\star}-2}u_{s},\quad u_{s}\in D^% {s}_{0}(\Omega),\,2^{\star}_{s}:=\frac{2N}{N-2s}, where s is any positive number, Ω is either ℝ N {\mathbb{R}^{N}} or a smooth symmetric bounded domain, and D 0 s ⁢ ( Ω ) {D^{s}_{0}(\Omega)} is the homogeneous Sobolev space. Depending on the kind of symmetry considered, solutions can be sign-changing. We show that, up to a subsequence, a l.e.s.s. u s {u_{s}} converges to a l.e.s.s. u t {u_{t}} as s goes to any t > 0 {t>0} . In bounded domains, this convergence can be characterized in terms of an homogeneous fractional norm of order t - ε {t-\varepsilon} . A similar characterization is no longer possible in unbounded domains due to scaling invariance and an incompatibility with the functional spaces; to circumvent these difficulties, we use a suitable rescaling and characterize the convergence via cut-off functions. If t is an integer, then these results describe in a precise way the nonlocal-to-local transition. Finally, we also include a nonexistence result of nontrivial nonnegative solutions in a ball for any s > 1 {s>1} .


Author(s):  
Wenhui Chen ◽  
Marcello D’Abbicco ◽  
Giovanni Girardi

AbstractIn this work, we prove the existence of global (in time) small data solutions for wave equations with two dissipative terms and with power nonlinearity $$|u|^p$$ | u | p or nonlinearity of derivative type $$|u_t|^p$$ | u t | p , in any space dimension $$n\geqslant 1$$ n ⩾ 1 , for supercritical powers $$p>{\bar{p}}$$ p > p ¯ . The presence of two dissipative terms strongly influences the nature of the problem, allowing us to derive $$L^r-L^q$$ L r - L q long time decay estimates for the solution in the full range $$1\leqslant r\leqslant q\leqslant \infty $$ 1 ⩽ r ⩽ q ⩽ ∞ . The optimality of the critical exponents is guaranteed by a nonexistence result for subcritical powers $$p<{\bar{p}}$$ p < p ¯ .


Kybernetes ◽  
2004 ◽  
Vol 33 (2) ◽  
pp. 414-421
Author(s):  
Hejin Xiong ◽  
Mian‐Yun Chen
Keyword(s):  

2019 ◽  
Vol 20 (11) ◽  
pp. 3633-3650
Author(s):  
Andrzej Herdegen

Abstract We consider a Schrödinger particle placed in an external electromagnetic field of the form typical for scattering settings in the field theory: $$F=F^\mathrm {ret}+F^\mathrm {in}=F^\mathrm {adv}+F^\mathrm {out}$$ F = F ret + F in = F adv + F out , where the current producing $$F^{\mathrm {ret}/\mathrm {adv}}$$ F ret / adv has the past and future asymptotes homogeneous of degree $$-3$$ - 3 , and the free fields $$F^{\mathrm {in}/\mathrm {out}}$$ F in / out are radiation fields produced by currents with similar asymptotic behavior. We show that with appropriate choice of electromagnetic gauge the particle has ‘in’ and ‘out’ states reached with no further modification of the asymptotic dynamics. We use a special quantum mechanical evolution ‘picture’ in which the free evolution operator has well-defined limits for $$t\rightarrow \pm \infty $$ t → ± ∞ , and thus the scattering wave operators do not need the free evolution counteraction. The existence of wave operators in this setting is established, but the proof of asymptotic completeness is not complete: more precise characterization of the asymptotic behavior of the particle for $$|\mathbf {x}|=|t|$$ | x | = | t | would be needed.


Sign in / Sign up

Export Citation Format

Share Document