scholarly journals Spatio-Temporal Tensor Sketching via Adaptive Sampling

Author(s):  
Jing Ma ◽  
Qiuchen Zhang ◽  
Joyce C. Ho ◽  
Li Xiong
Author(s):  
Homagni Saha ◽  
Tianshuang Gao ◽  
Hamid Emadi ◽  
Zhanhong Jiang ◽  
Arti Singh ◽  
...  

This paper presents the design, modeling, control and navigation for a novel ground-based mobile sensing platform that can collect multi-modal data in agricultural research farms for high throughput modular plant phenotyping. The platform will have the following capabilities (i) Navigate in a row-crop farm to collect data with minimal human intervention during operation (ii) Autonomous decision making i.e, it can take its own decisions for maximizing the value of information of the acquired data and (iii) Scalable in terms of the size of the farmland. The design requirements for such a platform or robot is formulated, and a detailed discussion on realizing such a design is presented. The dynamics of the robot is presented in the state space form and it is abstracted in the form of a control flow diagram for the automatic steering system. An adaptive sampling approach has been taken to generate an estimated belief-space which is leveraged in the proposed opportunistic sensing scheme to generate way-points for navigation.


2011 ◽  
Author(s):  
Koushil Sreenath ◽  
Muhammad F. Mysorewala ◽  
Dan O. Popa ◽  
Frank L. Lewis

2021 ◽  
Author(s):  
Marwa Fattoum ◽  
Zakia Jellali ◽  
Leila Najjar

Abstract Energy limitation is a major issue in WSN where a high volume of redundant data is collected periodically and transmitted through the network. Therefore, efficient energy consumption is the key solution to maximize the network lifetime. This paper proposes an adaptive sampling approach based on spatio-temporal correlation of collected data and on nodes residual energy. This approach aims to optimize sampling rates of sensor nodes while ensuring a high quality of the collected data. In addition, a data reconstruction method based on linear regression is adopted in the sink to reconstruct the missing samples due to sampling rate reduction and adaptation compared to the case of a constant maximal sampling rate. We compare our approach with recently proposed adaptive sampling benchmark methods in different scenarios of data temporal correlation. Simulation results show the effectiveness of our proposed method in optimizing energy consumption by reducing sampling rate while maintaining data quality.


2012 ◽  
pp. 249-268 ◽  
Author(s):  
Thomas R. Fanshawe ◽  
Peter J. Diggle

2005 ◽  
Vol 41 ◽  
pp. 15-30 ◽  
Author(s):  
Helen C. Ardley ◽  
Philip A. Robinson

The selectivity of the ubiquitin–26 S proteasome system (UPS) for a particular substrate protein relies on the interaction between a ubiquitin-conjugating enzyme (E2, of which a cell contains relatively few) and a ubiquitin–protein ligase (E3, of which there are possibly hundreds). Post-translational modifications of the protein substrate, such as phosphorylation or hydroxylation, are often required prior to its selection. In this way, the precise spatio-temporal targeting and degradation of a given substrate can be achieved. The E3s are a large, diverse group of proteins, characterized by one of several defining motifs. These include a HECT (homologous to E6-associated protein C-terminus), RING (really interesting new gene) or U-box (a modified RING motif without the full complement of Zn2+-binding ligands) domain. Whereas HECT E3s have a direct role in catalysis during ubiquitination, RING and U-box E3s facilitate protein ubiquitination. These latter two E3 types act as adaptor-like molecules. They bring an E2 and a substrate into sufficiently close proximity to promote the substrate's ubiquitination. Although many RING-type E3s, such as MDM2 (murine double minute clone 2 oncoprotein) and c-Cbl, can apparently act alone, others are found as components of much larger multi-protein complexes, such as the anaphase-promoting complex. Taken together, these multifaceted properties and interactions enable E3s to provide a powerful, and specific, mechanism for protein clearance within all cells of eukaryotic organisms. The importance of E3s is highlighted by the number of normal cellular processes they regulate, and the number of diseases associated with their loss of function or inappropriate targeting.


2019 ◽  
Vol 47 (6) ◽  
pp. 1733-1747 ◽  
Author(s):  
Christina Klausen ◽  
Fabian Kaiser ◽  
Birthe Stüven ◽  
Jan N. Hansen ◽  
Dagmar Wachten

The second messenger 3′,5′-cyclic nucleoside adenosine monophosphate (cAMP) plays a key role in signal transduction across prokaryotes and eukaryotes. Cyclic AMP signaling is compartmentalized into microdomains to fulfil specific functions. To define the function of cAMP within these microdomains, signaling needs to be analyzed with spatio-temporal precision. To this end, optogenetic approaches and genetically encoded fluorescent biosensors are particularly well suited. Synthesis and hydrolysis of cAMP can be directly manipulated by photoactivated adenylyl cyclases (PACs) and light-regulated phosphodiesterases (PDEs), respectively. In addition, many biosensors have been designed to spatially and temporarily resolve cAMP dynamics in the cell. This review provides an overview about optogenetic tools and biosensors to shed light on the subcellular organization of cAMP signaling.


Sign in / Sign up

Export Citation Format

Share Document