scholarly journals Deep Learning on Point Clouds for False Positive Reduction at Nodule Detection in Chest CT Scans

Author(s):  
Ivan Drokin ◽  
Elena Ericheva
2018 ◽  
Vol 25 (10) ◽  
pp. 1301-1310 ◽  
Author(s):  
Ross Gruetzemacher ◽  
Ashish Gupta ◽  
David Paradice

Abstract Objective To demonstrate and test the validity of a novel deep-learning-based system for the automated detection of pulmonary nodules. Materials and Methods The proposed system uses 2 3D deep learning models, 1 for each of the essential tasks of computer-aided nodule detection: candidate generation and false positive reduction. A total of 888 scans from the LIDC-IDRI dataset were used for training and evaluation. Results Results for candidate generation on the test data indicated a detection rate of 94.77% with 30.39 false positives per scan, while the test results for false positive reduction exhibited a sensitivity of 94.21% with 1.789 false positives per scan. The overall system detection rate on the test data was 89.29% with 1.789 false positives per scan. Discussion An extensive and rigorous validation was conducted to assess the performance of the proposed system. The system demonstrated a novel combination of 3D deep neural network architectures and demonstrates the use of deep learning for both candidate generation and false positive reduction to be evaluated with a substantial test dataset. The results strongly support the ability of deep learning pulmonary nodule detection systems to generalize to unseen data. The source code and trained model weights have been made available. Conclusion A novel deep-neural-network-based pulmonary nodule detection system is demonstrated and validated. The results provide comparison of the proposed deep-learning-based system over other similar systems based on performance.


Author(s):  
Vlad Vasilescu ◽  
Ana Neacsu ◽  
Emilie Chouzenoux ◽  
Jean-Christophe Pesquet ◽  
Corneliu Burileanu

2021 ◽  
Author(s):  
Pasquale Ardimento ◽  
Lerina Aversano ◽  
Mario Luca Bernardi ◽  
Marta Cimitile

2019 ◽  
Vol 115 ◽  
pp. 1-10 ◽  
Author(s):  
Bum-Chae Kim ◽  
Jee Seok Yoon ◽  
Jun-Sik Choi ◽  
Heung-Il Suk

Author(s):  
Maheshwar Kuchana ◽  
Amritesh Srivastava ◽  
Ronald Das ◽  
Justin Mathew ◽  
Atul Mishra ◽  
...  
Keyword(s):  
Chest Ct ◽  

2020 ◽  
Vol 24 (6) ◽  
pp. 1652-1663
Author(s):  
Hongbo Zhu ◽  
Hai Zhao ◽  
Chunhe Song ◽  
Zijian Bian ◽  
Yuanguo Bi ◽  
...  

Diagnostics ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 207 ◽  
Author(s):  
Dana Li ◽  
Bolette Mikela Vilmun ◽  
Jonathan Frederik Carlsen ◽  
Elisabeth Albrecht-Beste ◽  
Carsten Ammitzbøl Lauridsen ◽  
...  

The aim of this study was to systematically review the performance of deep learning technology in detecting and classifying pulmonary nodules on computed tomography (CT) scans that were not from the Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) database. Furthermore, we explored the difference in performance when the deep learning technology was applied to test datasets different from the training datasets. Only peer-reviewed, original research articles utilizing deep learning technology were included in this study, and only results from testing on datasets other than the LIDC-IDRI were included. We searched a total of six databases: EMBASE, PubMed, Cochrane Library, the Institute of Electrical and Electronics Engineers, Inc. (IEEE), Scopus, and Web of Science. This resulted in 1782 studies after duplicates were removed, and a total of 26 studies were included in this systematic review. Three studies explored the performance of pulmonary nodule detection only, 16 studies explored the performance of pulmonary nodule classification only, and 7 studies had reports of both pulmonary nodule detection and classification. Three different deep learning architectures were mentioned amongst the included studies: convolutional neural network (CNN), massive training artificial neural network (MTANN), and deep stacked denoising autoencoder extreme learning machine (SDAE-ELM). The studies reached a classification accuracy between 68–99.6% and a detection accuracy between 80.6–94%. Performance of deep learning technology in studies using different test and training datasets was comparable to studies using same type of test and training datasets. In conclusion, deep learning was able to achieve high levels of accuracy, sensitivity, and/or specificity in detecting and/or classifying nodules when applied to pulmonary CT scans not from the LIDC-IDRI database.


Sign in / Sign up

Export Citation Format

Share Document