Non-waste Technology for Sodium Hypochlorite Production

Author(s):  
I. V. Pchelnikov ◽  
R. V. Israilov ◽  
A. S. Pchelnikova
Keyword(s):  
Author(s):  
Russell L. Steere ◽  
Eric F. Erbe

Thin sheets of acrylamide and agar gels of different concentrations were prepared and washed in distilled water, cut into pieces of appropriate size to fit into complementary freeze-etch specimen holders (1) and rapidly frozen. Freeze-etching was accomplished in a modified Denton DFE-2 freeze-etch unit on a DV-503 vacuum evaporator.* All samples were etched for 10 min. at -98°C then re-cooled to -150°C for deposition of Pt-C shadow- and C replica-films. Acrylamide gels were dissolved in Chlorox (5.251 sodium hypochlorite) containing 101 sodium hydroxide, whereas agar gels dissolved rapidly in the commonly used chromic acid cleaning solutions. Replicas were picked up on grids with thin Foimvar support films and stereo electron micrographs were obtained with a JEM-100 B electron microscope equipped with a 60° goniometer stage.Characteristic differences between gels of different concentrations (Figs. 1 and 2) were sufficiently pronounced to convince us that the structures observed are real and not the result of freezing artifacts.


Author(s):  
Burton B. Silver

Tissue from a non-functional kidney affected with chronic membranous glomerulosclerosis was removed at time of trnasplantation. Recipient kidney tissue and donor kidney tissue were simultaneously fixed for electron microscopy. Primary fixation was in phosphate buffered gluteraldehyde followed by infiltration in 20 and then 40% glycerol. The tissues were frozen in liquid Freon and finally in liquid nitrogen. Fracturing and replication of the etched surface was carried out in a Denton freeze-etch device. The etched surface was coated with platinum followed by carbon. These replicas were cleaned in a 50% solution of sodium hypochlorite and mounted on 400 mesh copper grids. They were examined in an Siemens Elmiskop IA. The pictures suggested that the diseased kidney had heavy deposits of an unknown substance which might account for its inoperative state at the time of surgery. Such deposits were not as apparent in light microscopy or in the standard fixation methods used for EM. This might have been due to some extraction process which removed such granular material in the dehydration steps.


Author(s):  
M. G. Williams ◽  
C. Corn ◽  
R. F. Dodson ◽  
G. A. Hurst

During this century, interest in the particulate content of the organs and body fluids of those individuals affected by pneumoconiosis, cancer, or other diseases of unknown etiology developed and concern was further prompted with the increasing realization that various foreign particles were associated with or caused disease. Concurrently particularly in the past two decades, a number of methods were devised for isolating particulates from tissue. These methods were recently reviewed by Vallyathan et al. who concluded sodium hypochlorite digestion was both simple and superior to other digestion procedures.


Author(s):  
Ahmad Almehmadi

Abstract The re-use of healing abutments (HAs) has become common practice in implant dentistry for economic concerns and the aim of this in-vitro study was to assess the effect of sodium hypochlorite (NaOCl) in decontamination of HAs. 122 HAs (Used and sterilized n=107; New n=15) were procured from 3 centers, of which 3 samples were discarded due to perforation in sterilization pouch.  For sterility assessment, the used HAs (n=80) were cultured in Brain Heart Infusion Broth (BHI) and Potato Dextrose Agar (PDA), bacterial isolates were identified in 7 samples. Also, 24 used HAs were stained with Phloxine B, photographed and compared to new HAs (n=5). Scanning electron microscope (SEM) assessed the differences between the two sets of HAs, following which the 7 contaminated HAs along with 24 used HAs from staining experiment (Total=31) were subsequently treated with sodium hypochlorite (NaOCl) and SEM images were observed. About 8.75% of HAs tested positive in bacterial culture; Streptococcus sanguis, Dermabacter hominis, Staphylococcus haemolyticus, and Aspergillus species were isolated. Phloxine B staining was positive for used and sterilized HAs when compared to controls. The SEM images revealed deposits in the used HAs and although treatment with NaOCl eliminated the contamination of cultured HAs, the SEM showed visible debris in the HA thread region. This in-vitro study concluded that SEM images showed debris in used HAs at screw-hole and thread regions even though they tested negative in bacterial culture. The treatment with NaOCl of used HAs showed no bacterial contamination but the debris was observed in SEM images. Future studies on the chemical composition, biological implications, and clinical influence is warranted before considering the reuse of HAs.


Author(s):  
Rathika Rai ◽  
M. A. Easwaran ◽  
K. T. Dhivya

Aim: To evaluate the surface detail reproduction of dental stone this is immersed in different disinfectant solution and studied under stereomicroscope. Methodology: Total number of 30 specimens of dental stone (Type III) were made with measurements of 1.5cm diameter and 1cm height .This samples are divided in to 3 groups group A,B,C. were A is immersed in Distilled water which was taken as control group ;B is immersed in 2% Glutaraldehyde and C is immersed in 5%sodium hypochlorite. Each specimen were immersed in the disinfectant solution for 15 minutes and dried under room temperature for 24 hrs. After 24 hrs each specimens are studied under stereomicroscope for surface details. Result: The results showed no significant difference in the surface irregularities and porosities for a group 1 and group 2 except group 3 which showed significant increase in the porosities, surface irregularities and erosions after disinfection with 5% NaHOCl by immersion method. Conclusion: The surface detail reproduction capacity of die stone was adversely affected when 5% Sodium hypochlorite was used as disinfectant solution when compare d to control group and 2% Glutaraldehyde


Sign in / Sign up

Export Citation Format

Share Document