Rotation Forest-Based Logistic Model Tree for Website Phishing Detection

2021 ◽  
pp. 154-169
Author(s):  
Abdullateef O. Balogun ◽  
Noah O. Akande ◽  
Fatimah E. Usman-Hamza ◽  
Victor E. Adeyemo ◽  
Modinat A. Mabayoje ◽  
...  
2020 ◽  
Vol 12 (17) ◽  
pp. 2742
Author(s):  
Ehsan Kamali Maskooni ◽  
Seyed Amir Naghibi ◽  
Hossein Hashemi ◽  
Ronny Berndtsson

Groundwater (GW) is being uncontrollably exploited in various parts of the world resulting from huge needs for water supply as an outcome of population growth and industrialization. Bearing in mind the importance of GW potential assessment in reaching sustainability, this study seeks to use remote sensing (RS)-derived driving factors as an input of the advanced machine learning algorithms (MLAs), comprising deep boosting and logistic model trees to evaluate their efficiency. To do so, their results are compared with three benchmark MLAs such as boosted regression trees, k-nearest neighbors, and random forest. For this purpose, we firstly assembled different topographical, hydrological, RS-based, and lithological driving factors such as altitude, slope degree, aspect, slope length, plan curvature, profile curvature, relative slope position, distance from rivers, river density, topographic wetness index, land use/land cover (LULC), normalized difference vegetation index (NDVI), distance from lineament, lineament density, and lithology. The GW spring indicator was divided into two classes for training (434 springs) and validation (186 springs) with a proportion of 70:30. The training dataset of the springs accompanied by the driving factors were incorporated into the MLAs and the outputs were validated by different indices such as accuracy, kappa, receiver operating characteristics (ROC) curve, specificity, and sensitivity. Based upon the area under the ROC curve, the logistic model tree (87.813%) generated similar performance to deep boosting (87.807%), followed by boosted regression trees (87.397%), random forest (86.466%), and k-nearest neighbors (76.708%) MLAs. The findings confirm the great performance of the logistic model tree and deep boosting algorithms in modelling GW potential. Thus, their application can be suggested for other areas to obtain an insight about GW-related barriers toward sustainability. Further, the outcome based on the logistic model tree algorithm depicts the high impact of the RS-based factor, such as NDVI with 100 relative influence, as well as high influence of the distance from river, altitude, and RSP variables with 46.07, 43.47, and 37.20 relative influence, respectively, on GW potential.


Wind energy is one of the essential renewable energy resources because of its consistency due to the development of the technology and relative cost affordability. The wind energy is converted into electrical energy using rotating blades which are connected to the generator. Due to environmental conditions and large construction, the blades are subjected to various faults and cause the lack of productivity. The downtime can be reduced when they are diagnosed periodically using condition monitoring technique. These are considered as a machine learning problem which consists of three phases, namely feature extraction, feature selection and fault classification. In this study, statistical features are extracted from vibration signals, feature selection are carried out using J48 algorithm and the fault classification was carried out using logistic model tree algorithm.


Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1596 ◽  
Author(s):  
S. Vahid Razavi-Termeh ◽  
Abolghasem Sadeghi-Niaraki ◽  
Soo-Mi Choi

In the future, groundwater will be the major source of water for agriculture, drinking and food production as a result of global climate change. With increasing population growth, demand for groundwater has increased. Therefore, sustainable groundwater storage management has become a major challenge. This study introduces a new ensemble data mining approach with bivariate statistical models, using FR (frequency ratio), CF (certainty factor), EBF (evidential belief function), RF (random forest) and LMT (logistic model tree) to prepare a groundwater potential map (GPM) for the Booshehr plain. In the first step, 339 wells were chosen and randomly split into two groups with groundwater yields above 11 m3/h. A total of 238 wells (70%) were used for model training, and 101 wells (30%) were used for model validation. Then, 15 effective factors, including topographic and hydrologic factors, were selected for the modeling. The accuracy of the groundwater potential maps was determined using the ROC (receiver operating characteristic) curve and the AUC (area under the curve). The results show that the AUC obtained using the CF-RF, EBF-RF, FR-RF, CF-LMT, EBF-LMT and FR-LMT methods were 0.927, 0.924, 0.917, 0.906, 0.885 and 0.83, respectively. Therefore, it can be inferred that the ensemble of bivariate statistic and data mining models can improve the effectiveness of the methods in developing a groundwater potential map.


Forests ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 830 ◽  
Author(s):  
Viet-Ha Nhu ◽  
Ayub Mohammadi ◽  
Himan Shahabi ◽  
Baharin Bin Ahmad ◽  
Nadhir Al-Ansari ◽  
...  

We used remote sensing techniques and machine learning to detect and map landslides, and landslide susceptibility in the Cameron Highlands, Malaysia. We located 152 landslides using a combination of interferometry synthetic aperture radar (InSAR), Google Earth (GE), and field surveys. Of the total slide locations, 80% (122 landslides) were utilized for training the selected algorithms, and the remaining 20% (30 landslides) were applied for validation purposes. We employed 17 conditioning factors, including slope angle, aspect, elevation, curvature, profile curvature, stream power index (SPI), topographic wetness index (TWI), lithology, soil type, land cover, normalized difference vegetation index (NDVI), distance to river, distance to fault, distance to road, river density, fault density, and road density, which were produced from satellite imageries, geological map, soil maps, and a digital elevation model (DEM). We used these factors to produce landslide susceptibility maps using logistic regression (LR), logistic model tree (LMT), and random forest (RF) models. To assess prediction accuracy of the models we employed the following statistical measures: negative predictive value (NPV), sensitivity, positive predictive value (PPV), specificity, root-mean-squared error (RMSE), accuracy, and area under the receiver operating characteristic (ROC) curve (AUC). Our results indicated that the AUC was 92%, 90%, and 88% for the LMT, LR, and RF algorithms, respectively. To assess model performance, we also applied non-parametric statistical tests of Friedman and Wilcoxon, where the results revealed that there were no practical differences among the used models in the study area. While landslide mapping in tropical environment such as Cameron Highlands remains difficult, the remote sensing (RS) along with machine learning techniques, such as the LMT model, show promise for landslide susceptibility mapping in the study area.


Sign in / Sign up

Export Citation Format

Share Document