A Distributed Implementation of Flat Concurrent Prolog on Message-Passing Multiprocessor Systems

1993 ◽  
Author(s):  
Uwe Glässer
2017 ◽  
Vol 6 (2) ◽  
pp. 14 ◽  
Author(s):  
R. Roussel-Dupre

The basic mechanisms that govern the generation of an electromagnetic pulse (EMP) following a nuclear detonation in the atmosphere, including heights of burst (HOB) relevant to surface bursts (0 km), near surface bursts (0-2 km), air bursts (2-20 km) and high-altitude bursts (> 20 km), are reviewed. Previous computational codes developed to treat the source region and predict the EMP are discussed. A new 2-D hydrodynamic code (HYDROFLASH) that solves the fluid equations for electron and ion transport in the atmosphere and the coupled Maxwell equations using algorithms extracted from the Conservation Law (CLAW) package for solving multi-dimensional hyperbolic equations with finite volume techniques has been formulated. Simulations include the ground, atmospheric gradient, and an azimuthal applied magnetic field as a first approximation to the geomagnetic field. HYDROFLASH takes advantage of multiprocessor systems by using domain decomposition together with the Message Passing Interface (MPI) protocol for parallel processing. A detailed description of the model is presented along with computational results for a generic 10 kiloton (kT) burst detonated at 0 and 10 km altitude.


1991 ◽  
Vol 17 (6) ◽  
pp. 493-512 ◽  
Author(s):  
Y. Dotan ◽  
B. Arazi

1993 ◽  
Vol 19 (6) ◽  
pp. 633-649
Author(s):  
Helnye Azaria ◽  
Yuval Elovici

1996 ◽  
Vol 42 (3) ◽  
pp. 161-164
Author(s):  
Manish Gupta ◽  
Vijay Chandru

1989 ◽  
Vol 7 (2) ◽  
pp. 85-123 ◽  
Author(s):  
Avshalom Houri ◽  
Ehud Shapiro

Sign in / Sign up

Export Citation Format

Share Document