DNA Computing and Its Implications for Theoretical Computer Science

Author(s):  
Lila Kari
Author(s):  
Gemma Bel-Enguix ◽  
M. Dolores Jiménez-López

The paper provides an overview of what could be a new biological-inspired linguistics. The authors discuss some reasons for attempting a more natural description of natural language, lying on new theories of molecular biology and their formalization within the area of theoretical computer science. The authors especially explore three bio-inspired models of computation –DNA computing, membrane computing and networks of evolutionary processors (NEPs) – and their possibilities for achieving a simpler, more natural, and mathematically consistent theoretical linguistics.


2014 ◽  
pp. 1422-1437
Author(s):  
Gemma Bel-Enguix ◽  
M. Dolores Jiménez-López

The article provides an overview of what could be a new biological-inspired linguistics. The authors discuss some reasons for attempting a more natural description of natural language, lying on new theories of molecular biology and their formalization within the area of theoretical computer science. The authors especially explore three bio-inspired models of computation –DNA computing, membrane computing and networks of evolutionary processors (NEPs) – and their possibilities for achieving a simpler, more natural, and mathematically consistent theoretical linguistics.


Author(s):  
Mareike Dressler ◽  
Adam Kurpisz ◽  
Timo de Wolff

AbstractVarious key problems from theoretical computer science can be expressed as polynomial optimization problems over the boolean hypercube. One particularly successful way to prove complexity bounds for these types of problems is based on sums of squares (SOS) as nonnegativity certificates. In this article, we initiate optimization problems over the boolean hypercube via a recent, alternative certificate called sums of nonnegative circuit polynomials (SONC). We show that key results for SOS-based certificates remain valid: First, for polynomials, which are nonnegative over the n-variate boolean hypercube with constraints of degree d there exists a SONC certificate of degree at most $$n+d$$ n + d . Second, if there exists a degree d SONC certificate for nonnegativity of a polynomial over the boolean hypercube, then there also exists a short degree d SONC certificate that includes at most $$n^{O(d)}$$ n O ( d ) nonnegative circuit polynomials. Moreover, we prove that, in opposite to SOS, the SONC cone is not closed under taking affine transformation of variables and that for SONC there does not exist an equivalent to Putinar’s Positivstellensatz for SOS. We discuss these results from both the algebraic and the optimization perspective.


Sign in / Sign up

Export Citation Format

Share Document