Riemannian Holonomy Groups and Calibrated Geometry

Author(s):  
Dominic Joyce
1991 ◽  
Vol 23 (4) ◽  
pp. 372-374 ◽  
Author(s):  
D. R. Wilkins
Keyword(s):  

1968 ◽  
Vol 19 (2) ◽  
pp. 212-215
Author(s):  
D. V. Alekseevskii
Keyword(s):  

Author(s):  
V. P. Akulov ◽  
D. V. Volkov ◽  
V. A. Soroka
Keyword(s):  

1956 ◽  
Vol 10 ◽  
pp. 97-100 ◽  
Author(s):  
Jun-Ichi Hano ◽  
Hideki Ozeki

In this note we show in § 1, as the main result, that any connected Lie subgroup of the general linear group GL(n, R) can be realized as the holonomy group of a linear connection, i.e. the homogeneous holonomy group of the associeted affine connection, defined on an affine space of dimension n (n ≧ 2).


1976 ◽  
Vol 51 (1) ◽  
pp. 567-584 ◽  
Author(s):  
J. F. Plante ◽  
W. P. Thurston

1987 ◽  
Vol 19 (1) ◽  
pp. 95-107 ◽  
Author(s):  
C. D. Collinson ◽  
P. N. Smith

Sign in / Sign up

Export Citation Format

Share Document