Computer hardware considerations in digital imaging

1985 ◽  
pp. 42-47
Author(s):  
Edward J. Delp
Author(s):  
W.A. Carrington ◽  
F.S. Fay ◽  
K.E. Fogarty ◽  
L. Lifshitz

Advances in digital imaging microscopy and in the synthesis of fluorescent dyes allow the determination of 3D distribution of specific proteins, ions, GNA or DNA in single living cells. Effective use of this technology requires a combination of optical and computer hardware and software for image restoration, feature extraction and computer graphics.The digital imaging microscope consists of a conventional epifluorescence microscope with computer controlled focus, excitation and emission wavelength and duration of excitation. Images are recorded with a cooled (-80°C) CCD. 3D images are obtained as a series of optical sections at .25 - .5 μm intervals.A conventional microscope has substantial blurring along its optical axis. Out of focus contributions to a single optical section cause low contrast and flare; details are poorly resolved along the optical axis. We have developed new computer algorithms for reversing these distortions. These image restoration techniques and scanning confocal microscopes yield significantly better images; the results from the two are comparable.


Author(s):  
John F. Mansfield

The current imaging trend in optical microscopy, scanning electron microscopy (SEM) or transmission electron microscopy (TEM) is to record all data digitally. Most manufacturers currently market digital acquisition systems with their microscope packages. The advantages of digital acquisition include: almost instant viewing of the data as a high-quaity positive image (a major benefit when compared to TEM images recorded onto film, where one must wait until after the microscope session to develop the images); the ability to readily quantify features in the images and measure intensities; and extremely compact storage (removable 5.25” storage devices which now can hold up to several gigabytes of data).The problem for many researchers, however, is that they have perfectly serviceable microscopes that they routinely use that have no digital imaging capabilities with little hope of purchasing a new instrument.


Author(s):  
Xiao Zhang

Polymer microscopy involves multiple imaging techniques. Speed, simplicity, and productivity are key factors in running an industrial polymer microscopy lab. In polymer science, the morphology of a multi-phase blend is often the link between process and properties. The extent to which the researcher can quantify the morphology determines the strength of the link. To aid the polymer microscopist in these tasks, digital imaging systems are becoming more prevalent. Advances in computers, digital imaging hardware and software, and network technologies have made it possible to implement digital imaging systems in industrial microscopy labs.


Author(s):  
M. T. Postek ◽  
A. E. Vladar

One of the major advancements applied to scanning electron microscopy (SEM) during the past 10 years has been the development and application of digital imaging technology. Advancements in technology, notably the availability of less expensive, high-density memory chips and the development of high speed analog-to-digital converters, mass storage and high performance central processing units have fostered this revolution. Today, most modern SEM instruments have digital electronics as a standard feature. These instruments, generally have 8 bit or 256 gray levels with, at least, 512 × 512 pixel density operating at TV rate. In addition, current slow-scan commercial frame-grabber cards, directly applicable to the SEM, can have upwards of 12-14 bit lateral resolution permitting image acquisition at 4096 × 4096 resolution or greater. The two major categories of SEM systems to which digital technology have been applied are:In the analog SEM system the scan generator is normally operated in an analog manner and the image is displayed in an analog or "slow scan" mode.


2020 ◽  
Vol 5 (3) ◽  
pp. 622-636
Author(s):  
John Heilmann ◽  
Alexander Tucci ◽  
Elena Plante ◽  
Jon F. Miller

Purpose The goal of this clinical focus article is to illustrate how speech-language pathologists can document the functional language of school-age children using language sample analysis (LSA). Advances in computer hardware and software are detailed making LSA more accessible for clinical use. Method This clinical focus article illustrates how documenting school-age student's communicative functioning is central to comprehensive assessment and how using LSA can meet multiple needs within this assessment. LSA can document students' meaningful participation in their daily life through assessment of their language used during everyday tasks. The many advances in computerized LSA are detailed with a primary focus on the Systematic Analysis of Language Transcripts (Miller & Iglesias, 2019). The LSA process is reviewed detailing the steps necessary for computers to calculate word, morpheme, utterance, and discourse features of functional language. Conclusion These advances in computer technology and software development have made LSA clinically feasible through standardized elicitation and transcription methods that improve accuracy and repeatability. In addition to improved accuracy, validity, and reliability of LSA, databases of typical speakers to document status and automated report writing more than justify the time required. Software now provides many innovations that make LSA simpler and more accessible for clinical use. Supplemental Material https://doi.org/10.23641/asha.12456719


Sign in / Sign up

Export Citation Format

Share Document