Evolutionary Optimization of Transcription Factor Binding Motif Detection

Author(s):  
Zhao Zhang ◽  
Ze Wang ◽  
Guoqin Mai ◽  
Youxi Luo ◽  
Miaomiao Zhao ◽  
...  
2021 ◽  
Author(s):  
David Bergenholm ◽  
Yasaman Dabirian ◽  
Raphael Ferreira ◽  
Verena Siewers ◽  
Florian David ◽  
...  

Abstract The CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 system has become a standard tool in many genome engineering endeavors. The endonuclease-deficient version of Cas9 (dCas9) is also a powerful programmable tool for gene regulation. In this study, we made use of Saccharomyces cerevisiae transcription factor binding data to obtain a better understanding of the interplay between transcription factor binding and binding of dCas9 fused to an activator domain, VPR. More specifically, we targeted dCas9-VPR towards binding sites of Gcr1-Gcr2 and Tye7 present in several promoters of genes encoding enzymes engaged in the central carbon metabolism. From our data, we observed an upregulation of gene expression when dCas9-VPR was targeted next to a transcription factor binding motif, whereas downregulation or no change was observed when dCas9 was bound on a transcription factor motif. This suggests a steric competition between dCas9 and the specific transcription factor. Integrating transcription factor binding data, therefore, proved to be useful for designing gRNAs for CRISPRi/a applications.


2017 ◽  
Vol 45 (13) ◽  
pp. e119-e119 ◽  
Author(s):  
Jaime Abraham Castro-Mondragon ◽  
Sébastien Jaeger ◽  
Denis Thieffry ◽  
Morgane Thomas-Chollier ◽  
Jacques van Helden

2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Giovanna Ambrosini ◽  
Ilya Vorontsov ◽  
Dmitry Penzar ◽  
Romain Groux ◽  
Oriol Fornes ◽  
...  

2017 ◽  
Vol 114 (23) ◽  
pp. 5854-5861 ◽  
Author(s):  
Gregory A. Cary ◽  
Alys M. Cheatle Jarvela ◽  
Rene D. Francolini ◽  
Veronica F. Hinman

Sea stars and sea urchins are model systems for interrogating the types of deep evolutionary changes that have restructured developmental gene regulatory networks (GRNs). Although cis-regulatory DNA evolution is likely the predominant mechanism of change, it was recently shown that Tbrain, a Tbox transcription factor protein, has evolved a changed preference for a low-affinity, secondary binding motif. The primary, high-affinity motif is conserved. To date, however, no genome-wide comparisons have been performed to provide an unbiased assessment of the evolution of GRNs between these taxa, and no study has attempted to determine the interplay between transcription factor binding motif evolution and GRN topology. The study here measures genome-wide binding of Tbrain orthologs by using ChIP-sequencing and associates these orthologs with putative target genes to assess global function. Targets of both factors are enriched for other regulatory genes, although nonoverlapping sets of functional enrichments in the two datasets suggest a much diverged function. The number of low-affinity binding motifs is significantly depressed in sea urchins compared with sea star, but both motif types are associated with genes from a range of functional categories. Only a small fraction (∼10%) of genes are predicted to be orthologous targets. Collectively, these data indicate that Tbr has evolved significantly different developmental roles in these echinoderms and that the targets and the binding motifs in associated cis-regulatory sequences are dispersed throughout the hierarchy of the GRN, rather than being biased toward terminal process or discrete functional blocks, which suggests extensive evolutionary tinkering.


Sign in / Sign up

Export Citation Format

Share Document