EEG-Based Automated Detection of Schizophrenia Using Long Short-Term Memory (LSTM) Network

Author(s):  
A. Nikhil Chandran ◽  
Karthik Sreekumar ◽  
D. P. Subha

Author(s):  
Zhang Chao ◽  
Wang Wei-zhi ◽  
Zhang Chen ◽  
Fan Bin ◽  
Wang Jian-guo ◽  
...  

Accurate and reliable fault diagnosis is one of the key and difficult issues in mechanical condition monitoring. In recent years, Convolutional Neural Network (CNN) has been widely used in mechanical condition monitoring, which is also a great breakthrough in the field of bearing fault diagnosis. However, CNN can only extract local features of signals. The model accuracy and generalization of the original vibration signals are very low in the process of vibration signal processing only by CNN. Based on the above problems, this paper improves the traditional convolution layer of CNN, and builds the learning module (local feature learning block, LFLB) of the local characteristics. At the same time, the Long Short-Term Memory (LSTM) is introduced into the network, which is used to extract the global features. This paper proposes the new neural network—improved CNN-LSTM network. The extracted deep feature is used for fault classification. The improved CNN-LSTM network is applied to the processing of the vibration signal of the faulty bearing collected by the bearing failure laboratory of Inner Mongolia University of science and technology. The results show that the accuracy of the improved CNN-LSTM network on the same batch test set is 98.75%, which is about 24% higher than that of the traditional CNN. The proposed network is applied to the bearing data collection of Western Reserve University under the condition that the network parameters remain unchanged. The experiment shows that the improved CNN-LSTM network has better generalization than the traditional CNN.



Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5037
Author(s):  
Hisham ElMoaqet ◽  
Mohammad Eid ◽  
Martin Glos ◽  
Mutaz Ryalat ◽  
Thomas Penzel

Sleep apnea is a common sleep disorder that causes repeated breathing interruption during sleep. The performance of automated apnea detection methods based on respiratory signals depend on the signals considered and feature extraction methods. Moreover, feature engineering techniques are highly dependent on the experts’ experience and their prior knowledge about different physiological signals and conditions of the subjects. To overcome these problems, a novel deep recurrent neural network (RNN) framework is developed for automated feature extraction and detection of apnea events from single respiratory channel inputs. Long short-term memory (LSTM) and bidirectional long short-term memory (BiLSTM) are investigated to develop the proposed deep RNN model. The proposed framework is evaluated over three respiration signals: Oronasal thermal airflow (FlowTh), nasal pressure (NPRE), and abdominal respiratory inductance plethysmography (ABD). To demonstrate our results, we use polysomnography (PSG) data of 17 patients with obstructive, central, and mixed apnea events. Our results indicate the effectiveness of the proposed framework in automatic extraction for temporal features and automated detection of apneic events over the different respiratory signals considered in this study. Using a deep BiLSTM-based detection model, the NPRE signal achieved the highest overall detection results with true positive rate (sensitivity) = 90.3%, true negative rate (specificity) = 83.7%, and area under receiver operator characteristic curve = 92.4%. The present results contribute a new deep learning approach for automated detection of sleep apnea events from single channel respiration signals that can potentially serve as a helpful and alternative tool for the traditional PSG method.



Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5762
Author(s):  
Syed Basit Ali Bukhari ◽  
Khawaja Khalid Mehmood ◽  
Abdul Wadood ◽  
Herie Park

This paper presents a new intelligent islanding detection scheme (IIDS) based on empirical wavelet transform (EWT) and long short-term memory (LSTM) network to identify islanding events in microgrids. The concept of EWT is extended to extract features from three-phase signals. First, the three-phase voltage signals sampled at the terminal of targeted distributed energy resource (DER) or point of common coupling (PCC) are decomposed into empirical modes/frequency subbands using EWT. Then, instantaneous amplitudes and instantaneous frequencies of the three-phases at different frequency subbands are combined, and various statistical features are calculated. Finally, the EWT-based features along with the three-phase voltage signals are input to the LSTM network to differentiate between non-islanding and islanding events. To assess the efficacy of the proposed IIDS, extensive simulations are performed on an IEC microgrid and an IEEE 34-node system. The simulation results verify the effectiveness of the proposed IIDS in terms of non-detection zone (NDZ), computational time, detection accuracy, and robustness against noisy measurement. Furthermore, comparisons with existing intelligent methods and different LSTM architectures demonstrate that the proposed IIDS offers higher reliability by significantly reducing the NDZ and stands robust against measurements uncertainty.



Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1804
Author(s):  
Wentai Lei ◽  
Jiabin Luo ◽  
Feifei Hou ◽  
Long Xu ◽  
Ruiqing Wang ◽  
...  

Ground penetrating radar (GPR), as a non-invasive instrument, has been widely used in the civil field. The interpretation of GPR data plays a vital role in underground infrastructures to transfer raw data to the interested information, such as diameter. However, the diameter identification of objects in GPR B-scans is a tedious and labor-intensive task, which limits the further application in the field environment. The paper proposes a deep learning-based scheme to solve the issue. First, an adaptive target region detection (ATRD) algorithm is proposed to extract the regions from B-scans that contain hyperbolic signatures. Then, a Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) framework is developed that integrates Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) network to extract hyperbola region features. It transfers the task of diameter identification into a task of hyperbola region classification. Experimental results conducted on both simulated and field datasets demonstrate that the proposed scheme has a promising performance for diameter identification. The CNN-LSTM framework achieves an accuracy of 99.5% on simulated datasets and 92.5% on field datasets.





Author(s):  
Yanbin Lin ◽  
Dongliang Duan ◽  
Xueming Hong ◽  
Xiang Cheng ◽  
Liuqing Yang ◽  
...  


Author(s):  
Sawsan Morkos Gharghory

An enhanced architecture of recurrent neural network based on Long Short-Term Memory (LSTM) is suggested in this paper for predicting the microclimate inside the greenhouse through its time series data. The microclimate inside the greenhouse largely affected by the external weather variations and it has a great impact on the greenhouse crops and its production. Therefore, it is a massive importance to predict the microclimate inside greenhouse as a preceding stage for accurate design of a control system that could fulfill the requirements of suitable environment for the plants and crop managing. The LSTM network is trained and tested by the temperatures and relative humidity data measured inside the greenhouse utilizing the mathematical greenhouse model with the outside weather data over 27 days. To evaluate the prediction accuracy of the suggested LSTM network, different measurements, such as Root Mean Square Error (RMSE) and Mean Absolute Error (MAE), are calculated and compared to those of conventional networks in references. The simulation results of LSTM network for forecasting the temperature and relative humidity inside greenhouse outperform over those of the traditional methods. The prediction results of temperature and humidity inside greenhouse in terms of RMSE approximately are 0.16 and 0.62 and in terms of MAE are 0.11 and 0.4, respectively, for both of them.



Sign in / Sign up

Export Citation Format

Share Document