Experimental Studies on Concrete Using the Partial Replacement of Cement by Glass Powder and Fine Aggregate as Manufactured Sand

Author(s):  
Y. Pierce ◽  
Sumit Kumar B. Kanaka ◽  
B. Niteen

Construction and Demolition wastes(C&D wastes) are generated in all cities of the world due to rapid urbanization. Disposing C & D waste these days is a costly affair, and raises environmental issues. Hence an attempt is made to reuse the demolished concrete as a partial replacement of natural coarse aggregates. Also due to ban of sand mining by local authorities, the cost of natural fine aggregate is very high and itself becoming a scarce material. Hence crushed stone aggregates called manufactured sand (m sand) is used, totally replacing natural fine aggregates. This concept is found to be cost effective, minimizes disposal of C & D wastes, and leads towards Green Building Concepts. Compression test on M40 concrete cubes of size 150mmx150mmx150mm are conducted at end of 7 days and 28days. Mix design for M40 concrete is made in accordance to IS: 10262-2019 with water cement ratio of 0.45 using 53 Grade Ordinary Portland cement. Superplasticizer (LIQUIFIX) is used to enhance workability. Nano Silica (NS)(1.5% by weight of cement),Wollastonite powder(WP)(10%by weight of cement) and Basalt fibres(BF)(1% by weight of cement) are added as additives. It is observed, that compressive strength of 7 days and 28 days cured samples is 25% more with the addition of all three additives compared to samples without additives. Hence the loss of compressive strength obtained by using demolished concrete as aggregates and m sand in concrete is regained with the addition of additives.


Abstract. Continuous extraction of sand is having a huge impact on the natural river beds which has resulted in lowering of water table and a decrease in the amount of sediment supply. Despite the quantity of sand used in our day-to-day activities, our dependence on sand is significantly increasing. The use of manufactured sand as a fine aggregate in concrete draws the attention of many investigators and researchers. The present investigation includes the study of soundness and EDAX .The test results depicted that for M-sand substituted concrete the loss of weight, when subjected to alternate cycles of freezing and thawing when tested with magnesium and sodium sulphate solution was found to be less when compared with natural sand. The important observation is that the inclusion of manufactured sand in concrete reduces the pores present in concrete resulting in matrix densification and makes the concrete impermeable and substantially reduces the rate of oxygen diffusion and reduces the corrosion process as well. This paper also focuses on the effect of manufactured sand as a fine aggregate in the elastic and bond characteristics of concrete.


2020 ◽  
Vol 01 (01) ◽  
pp. 89-98
Author(s):  
Shivaleela Melinamani ◽  
Alveera Nadaf ◽  
Apoorva Pawar ◽  
Bhaskar S Allipur ◽  
Renuka G M

Sign in / Sign up

Export Citation Format

Share Document