Advances in Distributed Computing and Machine Learning

2022 ◽  
2021 ◽  
Vol 51 (4) ◽  
pp. 75-81
Ahad Mirza Baig ◽  
Alkida Balliu ◽  
Peter Davies ◽  
Michal Dory

Rachid Guerraoui was the rst keynote speaker, and he got things o to a great start by discussing the broad relevance of the research done in our community relative to both industry and academia. He rst argued that, in some sense, the fact that distributed computing is so pervasive nowadays could end up sti ing progress in our community by inducing people to work on marginal problems, and becoming isolated. His rst suggestion was to try to understand and incorporate new ideas coming from applied elds into our research, and argued that this has been historically very successful. He illustrated this point via the distributed payment problem, which appears in the context of blockchains, in particular Bitcoin, but then turned out to be very theoretically interesting; furthermore, the theoretical understanding of the problem inspired new practical protocols. He then went further to discuss new directions in distributed computing, such as the COVID tracing problem, and new challenges in Byzantine-resilient distributed machine learning. Another source of innovation Rachid suggested was hardware innovations, which he illustrated with work studying the impact of RDMA-based primitives on fundamental problems in distributed computing. The talk concluded with a very lively discussion.

2019 ◽  
Vol 214 ◽  
pp. 00001
Alessandra Forti ◽  
Latchezar Betev ◽  
Maarten Litmaath ◽  
Oxana Smirnova ◽  
Petya Vasileva ◽  

The 23rd International Conference on Computing in High Energy and Nuclear Physics (CHEP) took place in the National Palace of Culture, Sofia, Bulgaria from 9th to 13th of July 2018. 575 participants joined the plenary and the eight parallel sessions dedicated to: online computing; offline computing; distributed computing; data handling; software development; machine learning and physics analysis; clouds, virtualisation and containers; networks and facilities. The conference hosted 35 plenary presentations, 323 parallel presentations and 188 posters.

2019 ◽  
Vol 8 (4) ◽  
pp. 11801-11805

In the present occasions, because of urbanization and contamination, it has gotten important to screen and assess the nature of water arriving at our homes. Guaranteeing safe inventory of drinking water has become a major test for the cutting edge progress. In this desk work, we present a structure and improvement of a minimal effort framework for continuous checking of the water quality (WQ) in IoT (web of things). The framework comprise of a few sensors are accustomed to guesstimatingsomatic and element limitations of the water. The parameters like temperature, PH, turbidity, conductivity, broke up oxygen of the water can be estimated. The deliberate qualities from the sensors can be prepared by the center controller. The RBPI B+ (RBPI) model can be consumed as a center controller. At last, the instrument facts can be understood on web utilizing distributed computing. Here the information's are handled utilizing AI calculation it sense the water condition if the WQis great it open the entryway divider else it shuts the door divider. This whole procedure happens naturally without human mediation therefore spare an opportunity to contract with the circumstance physically. The uniqueness of our proposed research is to get the water observing framework with high recurrence, high portability, and low controlled.

I V Bychkov ◽  
A G Feoktistov ◽  
I A Sidorov ◽  
A V Edelev ◽  

Sign in / Sign up

Export Citation Format

Share Document