Backstepping Sliding Mode Control for Magnetic Suspension System of Maglev Train with Parameter Perturbations and External Disturbance

Author(s):  
Yougang Sun ◽  
Junqi Xu ◽  
Hao Xu ◽  
Wenfeng Cai ◽  
Guo-bin Lin
2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Jen-Hsing Li ◽  
Juing-Shian Chiou

This paper presents the two-dimensional fuzzy sliding mode control of a field-sensed magnetic suspension system. The fuzzy rules include both the sliding manifold and its derivative. The fuzzy sliding mode control has advantages of the sliding mode control and the fuzzy control rules are minimized. Magnetic suspension systems are nonlinear and inherently unstable systems. The two-dimensional fuzzy sliding mode control can stabilize the nonlinear systems globally and attenuate chatter effectively. It is adequate to be applied to magnetic suspension systems. New design circuits of magnetic suspension systems are proposed in this paper. ARM Cortex-M3 microcontroller is utilized as a digital controller. The implemented driver, sensor, and control circuits are simpler, more inexpensive, and effective. This apparatus is satisfactory for engineering education. In the hands-on experiments, the proposed control scheme markedly improves performances of the field-sensed magnetic suspension system.


2010 ◽  
Vol 139-141 ◽  
pp. 867-871
Author(s):  
Jing Feng Mao ◽  
Guo Qing Wu ◽  
Ai Hua Wu ◽  
Yang Cao

This paper investigates the constant position suspension altitude control problem for a novel magnetic levitation linear guide. The magnetic levitation linear guide is comprised of a magnetic suspension processing platform and a linear motor direct-drive system. The magnetic suspension system has several characteristics of complicated nonlinearity, parameter perturbation and strong disturbance. In view of these characteristics, an adaptive integral-type sliding mode control (AISMC) technique is used to design magnetic suspension system constant position suspension altitude controller. The AISMC can alleviate chattering and reduce steady error by estimating the boundary of uncertain perturbation. The adaptive tuning algorithm is derived in the sense of the Lyapunov stability theorem, thus the stability of the system can be guaranteed. Simulation results indicate that the proposed AISMC has a better stability, transient and robustness compared with PID control.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Kammogne Soup Tewa Alain ◽  
Kenmogne Fabien ◽  
Siewe Siewe Martin ◽  
Fotsin Hilaire Bertrand

AbstractThis paper deals with a new approach to explore the precise dynamic response of the maglev system train and its control. Magnetic-suspension systems are characterized by high nonlinearity and open-loop instability which are the core components of maglev vehicles. Firstly, we use the electromagnetics and mechanics laws to derive the mathematical expressions of the proposed maglev system. Analytical investigation and theoretical calculation show that for the specific values of the control system parameters, the maglev system train can be significantly improved. It points out that the inherent nonlinearity, the inner coupling, misalignments between the sensors and actuators, and external disturbances are the main issues that should be considered for maglev engineering. Secondly, a control strategy based on the precise model of a nonsing ular robust sliding mode control is designed to reduce the upper bound of both the uncertainty and interference of the sliding mode controller. This approach presents an added value compared to the new sliding control methods in terms of overshoot and speed of convergence which is designed to control the vertical position of the proposed system. By using rigorous mathematical transformation associated with the adaptation laws in the frequency domain, a sufficient condition is drawn for the stability of the dynamical error based on the Lyapunov theory. This allows us a great possibility for interpreting the operation of the maglev train system. Numerical results are presented to show the effectiveness of our proposed control scheme.


Author(s):  
Tao Xu ◽  
Youqun Zhao ◽  
Fen Lin ◽  
Qiuwei Wang

For the purpose of anti-puncture and lightweight, a new type of mechanical elastic wheel (MEW) is constructed. However, the large radial stiffness of MEW has a negative effect on ride comfort. To make up for the disadvantage, this paper proposes a novel control strategy consisting of backstepping control and integral sliding-mode control, considering the uncertainties of active suspension and MEW. First, an active suspension system matching MEW is established, discussing the impact of uncertainties. The nonlinear radial characteristic of MEW is fitted based on the previous experiment results. Then, in order to derive ideal motions, an ideal suspension system combining sky-hook and ground-hook damping control is introduced. Next, ignoring the nonlinear characteristics and external random disturbance, a backstepping controller is designed to track ideal variables. Combined with the backstepping control law, an integral sliding-mode control strategy is given, further taking parameter uncertainty and external disturbance into account. To tackle chattering problem, an adaptive state variable matrix is applied. By using Lyapunov stability theory, the whole scheme proves to be robust and convergent. Finally, co-simulations with Carsim and MATLAB/Simulink are carried out. By analyzing the simulation results, it can be concluded that the vehicle adopting backstepping sliding-mode control performs best, with excellent real-time performance and robustness.


Proceedings ◽  
2020 ◽  
Vol 64 (1) ◽  
pp. 1
Author(s):  
Shuzhong Zhang ◽  
Tianyi Chen ◽  
Fuquan Dai

Due to the advantages of high energy efficiency and environmental friendliness, the electro-hydraulic actuator (EHA) plays a vital role in fluid power control. One variant of EHA, double pump direct driven hydraulics (DDH), is proposed, which consists of double fixed-displacement pumps, a servo motor, an asymmetric cylinder and auxiliary components. This paper proposes an adaptive backstepping sliding mode control (ABSMC) strategy for DDH to eliminate the adverse effect produced by parametric uncertainty, nonlinear characteristics and the uncertain external disturbance. Based on theoretical analysis, the nonlinear system model is built and transformed. Furthermore, by defining the sliding manifold and selecting a proper Lyapunov function, the nesting problems (of the designed variable and adaptive law) caused by uncertain coefficients are solved. Moreover, the adaptive backstepping control and the sliding mode control are combined to boost system robustness. At the same time, the controller parameter adaptive law is derived from Lyapunov analysis to guarantee the stability of the system. Simulations of the DDH are performed with the proposed control strategy and proportional–integral–differential (PID), respectively. The results show that the proposed control strategy can achieve better position tracking and stronger robustness under parameter changing compared with PID.


Sign in / Sign up

Export Citation Format

Share Document