Nonlinear Disturbance Observer-Based Sliding-Mode Geometric Controller for Fully-Actuated Hexarotor

2021 ◽  
pp. 534-545
Author(s):  
Yuanhao Li ◽  
Yu Zhang ◽  
Yongliang Lin ◽  
Jiayan Wan
2018 ◽  
Vol 10 (9) ◽  
pp. 168781401879574 ◽  
Author(s):  
Wei Yuan ◽  
Guoqin Gao

The trajectory-tracking performance of the automobile electro-coating conveying mechanism is severely interrupted by highly nonlinear crossing couplings, unmodeled dynamics, parameter variation, friction, and unknown external disturbance. In this article, a sliding mode control with a nonlinear disturbance observer is proposed for high-accuracy motion control of the conveying mechanism. The nonlinear disturbance observer is designed to estimate not only the internal/external disturbance but also the model uncertainties. Based on the output of the nonlinear disturbance observer, a sliding mode control approach is designed for the hybrid series–parallel mechanism. Then, the stability of the closed-loop system is proved by means of a Lyapunov analysis. Finally, simulations with typical desired trajectory are presented to demonstrate the high performance of the proposed composite control scheme.


2014 ◽  
Vol 711 ◽  
pp. 297-302
Author(s):  
Xiao Feng Liu ◽  
Hong Zhang ◽  
He Qiao

Aiming at uncertainty and disturbance of the excitation system, we designed a kind of precise sliding mode controller with nonlinear disturbance observer that realized disturbance estimation and compensation. In order to obtain better convergence rates, based on the basis of fast terminal sliding mode surface, terminal piecewise sliding mode is adopted. Using the single machine infinite system, we have carried on the static and transient simulation. Simulation results show that control strategy adopted can guarantee system robustness to disturbance and has high control precision


Author(s):  
Syed Muhammad Amrr ◽  
M Nabi ◽  
Pyare Mohan Tiwari

This paper investigates the application of an integral sliding mode control with a robust nonlinear disturbance observer to obtain an anti-unwinding spacecraft attitude tracking response with robustness against external disturbances, inertia matrix uncertainties, and actuator faults. In the controller design, external disturbances, uncertainties, and actuator faults are lumped together and estimated by the robust nonlinear disturbance observer. The proposed robust nonlinear disturbance observer guarantees the convergence of estimated lumped disturbance error to origin in finite time. The estimated disturbance is then used in the controller as a feed-forward compensator. Further, an adaptive law is also incorporated in the proposed controller to ensure additional robustness. The stability of the overall system and anti-unwinding characteristic are proved using the Lyapunov stability theory. Finally, numerical simulation analysis is performed in the presence of all the sources of lumped disturbances. It is observed that the proposed control strategy is ensuring higher accuracy, good steady-state precision, and eliminates the unwinding phenomenon.


Sign in / Sign up

Export Citation Format

Share Document