Saccadic responses evoked by presentation of visual and auditory targets

1982 ◽  
Vol 47 (3) ◽  
Author(s):  
D. Zambarbieri ◽  
R. Schmid ◽  
G. Magenes ◽  
C. Prablanc
Keyword(s):  
2021 ◽  
Vol 7 (12) ◽  
pp. eabf4355
Author(s):  
Patrick G. Bissett ◽  
Henry M. Jones ◽  
Russell A. Poldrack ◽  
Gordon D. Logan

The stop-signal paradigm, a primary experimental paradigm for understanding cognitive control and response inhibition, rests upon the theoretical foundation of race models, which assume that a go process races independently against a stop process that occurs after a stop-signal delay (SSD). We show that severe violations of this independence assumption at short SSDs occur systematically across a wide range of conditions, including fast and slow reaction times, auditory and visual stop signals, manual and saccadic responses, and especially in selective stopping. We also reanalyze existing data and show that conclusions can change when short SSDs are excluded. Last, we suggest experimental and analysis techniques to address this violation, and propose adjustments to extant models to accommodate this finding.


Perception ◽  
10.1068/p7085 ◽  
2012 ◽  
Vol 41 (2) ◽  
pp. 131-147 ◽  
Author(s):  
Nicola J Gregory ◽  
Timothy L Hodgson

Pointing with the eyes or the finger occurs frequently in social interaction to indicate direction of attention and one's intentions. Research with a voluntary saccade task (where saccade direction is instructed by the colour of a fixation point) suggested that gaze cues automatically activate the oculomotor system, but non-biological cues, like arrows, do not. However, other work has failed to support the claim that gaze cues are special. In the current research we introduced biological and non-biological cues into the anti-saccade task, using a range of stimulus onset asynchronies (SOAs). The anti-saccade task recruits both top–down and bottom–up attentional mechanisms, as occurs in naturalistic saccadic behaviour. In experiment 1 gaze, but not arrows, facilitated saccadic reaction times (SRTs) in the opposite direction to the cues over all SOAs, whereas in experiment 2 directional word cues had no effect on saccades. In experiment 3 finger pointing cues caused reduced SRTs in the opposite direction to the cues at short SOAs. These findings suggest that biological cues automatically recruit the oculomotor system whereas non-biological cues do not. Furthermore, the anti-saccade task set appears to facilitate saccadic responses in the opposite direction to the cues.


2013 ◽  
Vol 109 (2) ◽  
pp. 518-545 ◽  
Author(s):  
K. P. Schultz ◽  
C. Busettini

Saccadic eye movements are rapid transfers of gaze between objects of interest. Their duration is too short for the visual system to be able to follow their progress in time. Adaptive mechanisms constantly recalibrate the saccadic responses by detecting how close the landings are to the selected targets. The double-step saccadic paradigm is a common method to simulate alterations in saccadic gain. While the subject is responding to a first target shift, a second shift is introduced in the middle of this movement, which masks it from visual detection. The error in landing introduced by the second shift is interpreted by the brain as an error in the programming of the initial response, with gradual gain changes aimed at compensating the apparent sensorimotor mismatch. A second shift applied dichoptically to only one eye introduces disconjugate landing errors between the two eyes. A monocular adaptive system would independently modify only the gain of the eye exposed to the second shift in order to reestablish binocular alignment. Our results support a binocular mechanism. A version-based saccadic adaptive process detects postsaccadic version errors and generates compensatory conjugate gain alterations. A vergence-based saccadic adaptive process detects postsaccadic disparity errors and generates corrective nonvisual disparity signals that are sent to the vergence system to regain binocularity. This results in striking dynamical similarities between visually driven combined saccade-vergence gaze transfers, where the disparity is given by the visual targets, and the double-step adaptive disconjugate responses, where an adaptive disparity signal is generated internally by the saccadic system.


Perception ◽  
1996 ◽  
Vol 25 (1_suppl) ◽  
pp. 47-47 ◽  
Author(s):  
J M Findlay ◽  
R Walker ◽  
V Brown ◽  
I Gilchrist ◽  
M Clarke

Individuals with strabismus frequently show a suppression phenomenon in which part of the visual input in one eye is apparently ignored when both eyes are seeing, although the eye may have normal vision when used monocularly. This is often described as an adaptive response to avoid diplopia. We have examined two patients with microstrabismus (angle of squint less than 5 deg) who show strong suppression but with only mild amblyopia. We studied saccade generation in the two eyes using a red — green anaglyph display which allowed us to present stimuli independently to each eye. When single targets were presented in the suppressing eye, saccadic responses usually occurred. However the latencies of these saccades were increased with respect to those elicited from the normal eye (by about 70 ms for one subject and 270 ms for the other). The amplitudes of the saccades were less consistent than those of the normal eye, and saccades were sometimes made in the opposite direction to the target. We also investigated the remote distractor effect. This effect is found consistently in normal subjects and consists of an increase in the latency of a target-elicited saccade when a distractor is simultaneously presented elsewhere in the visual field. When distractors were presented in the suppressing eye, they had no effect on the latency of saccades to a simultaneous target in the other eye. We conclude that visual stimulation in a suppressing eye has no rapid access to the saccadic system.


1999 ◽  
Vol 105 (2) ◽  
pp. 1391-1392
Author(s):  
Heike Heuermann‐Mehmood ◽  
Hans Colonius
Keyword(s):  

1997 ◽  
Vol 78 (1) ◽  
pp. 533-538 ◽  
Author(s):  
H.H.L.M. Goossens ◽  
A. J. Van Opstal

Goossens, H.H.L.M. and A. J. Van Opstal. Local feedback signals are not distorted by prior eye movements: evidence from visually evoked double saccades. J. Neurophysiol. 78: 533–538, 1997. Recent experiments have shown that the amplitude and direction of saccades evoked by microstimulation of the monkey superior colliculus depend systematically on the amplitude and direction of preceding visually guided saccades as well as on the postsaccade stimulation interval. The data are consistent with the hypothesis that an eye displacement integrator in the local feedback loop of the saccadic burst generator is gradually reset with a time constant of ∼45 ms. If this is true, similar effects should occur during naturally evoked saccade sequences, causing systematic interval-dependent errors. To test this prediction in humans, saccades toward visual single- and double-step stimuli were elicited, and the properties of the second saccades were investigated as a function of the intersaccadic interval (ISI). In 15–20% of the saccadic responses, ISIs fell well below 100 ms. The errors of the second saccades were not systematically affected by the preceding primary saccade, irrespective of the ISI. Only a slight increase in the endpoint variability of second saccades was observed for the shortest ISIs. These results are at odds with the hypothesis that the putative eye displacement integrator has a reset time constant >10 ms. Instead, it is concluded that the signals involved in the internal feedback control of the saccadic burst generator reflect eye position and/or eye displacement accurately, irrespective of preceding eye movements.


2019 ◽  
Vol 74 ◽  
pp. 102783 ◽  
Author(s):  
Nathan Ryckman ◽  
Martina Bandzo ◽  
Yichen Qian ◽  
Anthony J. Lambert

Sign in / Sign up

Export Citation Format

Share Document