Static spherically-symmetric scalar-field theory in general relativity

1982 ◽  
Vol 88 (2) ◽  
pp. 493-499 ◽  
Author(s):  
Demetrios D. Dionysiou
Particles ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 1-11
Author(s):  
Bobur Turimov ◽  
Ahmadjon Abdujabbarov ◽  
Bobomurat Ahmedov ◽  
Zdeněk Stuchlík

An exact analytical, spherically symmetric, three-parametric wormhole solution has been found in the Einstein-scalar field theory, which covers the several well-known wormhole solutions. It is assumed that the scalar field is massless and depends on the radial coordinate only. The relation between the full contraction of the Ricci tensor and Ricci scalar has been found as RαβRαβ=R2. The derivation of the Einstein field equations have been explicitly shown, and the exact analytical solution has been found in terms of the three constants of integration. The several wormhole solutions have been extracted for the specific values of the parameters. In order to explore the physical meaning of the integration constants, the solution has been compared with the previously obtained results. The curvature scalar has been determined for all particular solutions. Finally, it is shown that the general solution describes naked singularity characterized by the mass, the scalar quantity and the throat.


2001 ◽  
Vol 16 (28) ◽  
pp. 4543-4545 ◽  
Author(s):  
A. BHADRA ◽  
K. K. NANDI

We comment that the static and spherically symmetric solutions to the Einstein-minimally coupled scalar field theory as obtained independently by Buchdahl and Janis–Newman–Winicour (JNW) are the same. Since it is already known that JNW and Wyman solutions are not different,1 therefore we conclude that Buchdahl, JNW and Wyman solutions are the same.


2000 ◽  
Vol 579 (1-2) ◽  
pp. 379-410 ◽  
Author(s):  
Alberto Frizzo ◽  
Lorenzo Magnea ◽  
Rodolfo Russo

2011 ◽  
Author(s):  
Angel A. García-Chung ◽  
Hugo A. Morales-Técotl ◽  
Luis Arturo Ureña-López ◽  
Hugo Aurelio Morales-Técotl ◽  
Román Linares-Romero ◽  
...  

1998 ◽  
Vol 13 (31) ◽  
pp. 2495-2501 ◽  
Author(s):  
KURT LANGFELD ◽  
HUGO REINHARDT

A scalar field theory in four space–time dimensions is proposed, which embodies a scalar condensate, but is free of the conceptual problems of standard ϕ4-theory. We propose an N-component, O(N)-symmetric scalar field theory, which is originally defined on the lattice. The scalar lattice model is analytically solved in the large-N limit. The continuum limit is approached via an asymptotically free scaling. The renormalized theory evades triviality, and furthermore gives rise to a dynamically formed mass of the scalar particle. The model might serve as an alternative to the Higgs sector of the standard model, where the quantum level of the standard ϕ4-theory contradicts phenomenology due to triviality.


Sign in / Sign up

Export Citation Format

Share Document