Evaluation of interfacial properties between carbon fibres and semicrystalline thermoplastic matrices in single-fibre composites

1992 ◽  
Vol 27 (18) ◽  
pp. 5108-5112 ◽  
Author(s):  
N. Ogata ◽  
H. Yasumoto ◽  
K. Yamasaki ◽  
Hu Yu ◽  
T. Ogihara ◽  
...  
2015 ◽  
Vol 3 (7) ◽  
pp. 3360-3371 ◽  
Author(s):  
L. Servinis ◽  
L. C. Henderson ◽  
L. M. Andrighetto ◽  
M. G. Huson ◽  
T. R. Gengenbach ◽  
...  

An in situ diazonium grafting methodology was used to decorate the surface of carbon fibres with pendant amines. This methodology was shown to greatly affect IFSS in single fibre composites.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1544 ◽  
Author(s):  
Thomas R. Pozegic ◽  
Samantha Huntley ◽  
Marco L. Longana ◽  
Suihua He ◽  
R. M. Indrachapa Bandara ◽  
...  

In order to increase the material throughput of aligned discontinuous fibre composites using technologies such as HiPerDiF, stability of the carbon fibres in an aqueous solution needs to be achieved. Subsequently, a range of surfactants, typically employed to disperse carbon-based materials, have been assessed to determine the most appropriate for use in this regard. The optimum stability of the discontinuous fibres was observed when using the anionic surfactant, sodium dodecylbenzene sulphonate, which was superior to a range of other non-ionic and anionic surfactants, and single-fibre fragmentation demonstrated that the employment of sodium dodecylbenzene sulphonate did not affect the interfacial adhesion between fibres. Rheometry was used to complement the study, to understand the potential mechanisms of the improved stability of discontinuous fibres in aqueous suspension, and it led to the understanding that the increased viscosity was a significant factor. For the shear rates employed, fibre deformation was neither expected nor observed.


RSC Advances ◽  
2014 ◽  
Vol 4 (104) ◽  
pp. 60168-60175 ◽  
Author(s):  
Qiaoli Peng ◽  
Zehui Zhang ◽  
Ze'ai Huang ◽  
Wei Ren ◽  
Jie Sun

N-Doped ordered mesoporous carbon (N-OMC) was successfully prepared using dicyandiamide (C2H4N4) as the nitrogen source and was grafted onto activated carbon fibres (ACFs) to form carbon composites (ACF@N-OMC).


2019 ◽  
Vol 39 (3-4) ◽  
pp. 144-162 ◽  
Author(s):  
Faisal Islam ◽  
Sébastien Joannès ◽  
Steve Bucknell ◽  
Yann Leray ◽  
Anthony Bunsell ◽  
...  

Knowledge of fibre strength is crucial for understanding the failure behaviour of fibre-reinforced composite materials and structures. Measuring the properties of technical fibres has been known to be very challenging, and the different challenges associated with single fibre characterisation are illustrated in this article. An improved and automated experimental methodology for tensile testing of single fibres is described. This process has been used to generate fibre strength data for T700 carbon fibres at three different gauge lengths of 4, 20 and 30 mm. The variability in strength and modulus of short fibres was found to be much larger than that of longer fibres. Statistical analysis of this large data set has also highlighted the limitations of the standard Weibull distribution for representing fibre strength behaviour. The need for a better statistical representation of the fibre strength data in order to provide a more accurate description of the fibre strength behaviour has been emphasized.


Sign in / Sign up

Export Citation Format

Share Document