Schatten class composition operators on weighted Bergman spaces of bounded symmetric domains

1997 ◽  
Vol 172 (1) ◽  
pp. 379-394 ◽  
Author(s):  
Song-Ying Li ◽  
Bernard Russo
2020 ◽  
Vol 126 (3) ◽  
pp. 519-539
Author(s):  
Juntao Du ◽  
Songxiao Li ◽  
Yecheng Shi

In this paper, we investigate the boundedness, compactness, essential norm and the Schatten class of weighted composition operators $uC_\varphi $ on Bergman type spaces $A_\omega ^p $ induced by a doubling weight ω. Let $X=\{u\in H(\mathbb{D} ): uC_\varphi \colon A_\omega ^p\to A_\omega ^p\ \text {is bounded}\}$. For some regular weights ω, we obtain that $X=H^\infty $ if and only if ϕ is a finite Blaschke product.


2021 ◽  
Vol 93 (3) ◽  
Author(s):  
Harald Upmeier

AbstractWe determine the eigenvalues of certain “fundamental” K-invariant Toeplitz type operators on weighted Bergman spaces over bounded symmetric domains $$D=G/K,$$ D = G / K , for the irreducible K-types indexed by all partitions of length $$r={\mathrm {rank}}(D)$$ r = rank ( D ) .


Sign in / Sign up

Export Citation Format

Share Document