Crystallization kinetics of poly(ethylene adipate) investigated by differential scanning calorimetry

1990 ◽  
Vol 36 (6) ◽  
pp. 2253-2256 ◽  
Author(s):  
J. T. Haponiuk ◽  
J. Foks
2014 ◽  
Vol 605 ◽  
pp. 35-38
Author(s):  
Eirini Varouti

The aim of the present work was the preparation and characterization of FeSiB amorphous magnetic ribbons with the following chemical composition: Fe80SixB20-x, x=5,6,8 and Fe75Si15B10. Differential Scanning Calorimetry was employed in order to study the thermal stability and structural changes during the transformations that took place. Much emphasis is placed on the analysis of the crystallization kinetics.


2008 ◽  
Vol 8 (4) ◽  
pp. 1812-1822 ◽  
Author(s):  
Jayita Bandyopadhyay ◽  
Suprakas Sinha Ray ◽  
Mosto Bousmina

This article reports the nonisothermal crystallization kinetics of poly(ethylene terephthalate) (PET) nanocomposites. The non-isothermal crystallization behaviors of PET and the nanocomposite samples are studied by differential scanning calorimetry (DSC). Various models, namely the Avrami method, the Ozawa method, and the combined Avrami-Ozawa method, are applied to describe the kinetics of the non-isothermal crystallization. The combined Avrami and Ozawa models proposed by Liu and Mo also fit with the experimental data. Different kinetic parameters determined from these models prove that in nanocomposite samples intercalated silicate particles are efficient to start crystallization earlier by nucleation, however, the crystal growth decrease in nanocomposites due to the intercalation of polymer chains in the silicate galleries. Polarized optical microscopy (POM) observations also support the DSCresults. The activation energies for crystallization has been estimated on the basis of three models such as Augis–Bennett, Kissinger and Takhor methods follow the trend PET/2C20A<PET/1.3C20A<PET, indicating incorporation of organoclay enhance the crystallization by offering large surface area.


2004 ◽  
Vol 19 (10) ◽  
pp. 2929-2937 ◽  
Author(s):  
Chain-Ming Lee ◽  
Yeong-Iuan Lin ◽  
Tsung-Shune Chin

Nonisothermal crystallization kinetics of amorphous chalcogenide Ga–Sb–Te films with compositions along the pseudo-binary tie-lines connecting Sb7Te3−GaSb and Sb2Te3–GaSb of the ternary phase diagram were investigated by means of differential scanning calorimetry. Powder samples were prepared firstly by film deposition using a co-sputtering method; the films were then stripped from the substrate. The activation energy (Ea) and rate factor (Ko) were evaluated from the heating rate dependency of the crystallization temperature using the Kissinger method. The kinetic exponent (n) was deduced from the exothermic peak integrals using the Ozawa method. The crystallization temperature (Tx = 181 to 327 °C) and activation energy (Ea= 2.8 to 6.5 eV) increased monotonically with increasing GaSb content and reached a maximum value in compositions located at the vicinity of GaSb. The kinetic exponent is temperature dependent and shows higher values in the SbTe-rich compositions. Promising media compositions worthy of further studies were identified through the determined kinetics parameters.


Sign in / Sign up

Export Citation Format

Share Document