A classical integrable system and the involutive representation of solutions of theKdV equation

1991 ◽  
Vol 7 (3) ◽  
pp. 216-223 ◽  
Author(s):  
Cao Cewen
2017 ◽  
Vol 72 (4) ◽  
pp. 331-337 ◽  
Author(s):  
Zhao-Wen Yan

AbstractThe Heisenberg supermagnet model is an important supersymmetric integrable system in (1+1)-dimensions. We construct two types of the (2+1)-dimensional integrable Heisenberg supermagnet models with the quadratic constraints and investigate the integrability of the systems. In terms of the gage transformation, we derive their gage equivalent counterparts. Furthermore, we also construct new solutions of the supersymmetric integrable systems by means of the Bäcklund transformations.


2021 ◽  
Vol 111 (3) ◽  
Author(s):  
Giulio Bonelli ◽  
Fabrizio Del Monte ◽  
Pavlo Gavrylenko ◽  
Alessandro Tanzini

AbstractWe study the relation between class $$\mathcal {S}$$ S theories on punctured tori and isomonodromic deformations of flat SL(N) connections on the two-dimensional torus with punctures. Turning on the self-dual $$\Omega $$ Ω -background corresponds to a deautonomization of the Seiberg–Witten integrable system which implies a specific time dependence in its Hamiltonians. We show that the corresponding $$\tau $$ τ -function is proportional to the dual gauge theory partition function, the proportionality factor being a nontrivial function of the solution of the deautonomized Seiberg–Witten integrable system. This is obtained by mapping the isomonodromic deformation problem to $$W_N$$ W N free fermion correlators on the torus.


2021 ◽  
Vol 41 (4) ◽  
pp. 1034-1056
Author(s):  
Feng Liang ◽  
Maoan Han ◽  
Chaoyuan Jiang

Sign in / Sign up

Export Citation Format

Share Document