One sided incompressible surfaces in 3-manifolds

Author(s):  
John Hempel

1985 ◽  
Vol 79 (2) ◽  
pp. 225-246 ◽  
Author(s):  
A. Hatcher ◽  
W. Thurston




1983 ◽  
Vol 71 (3) ◽  
pp. 609-642 ◽  
Author(s):  
Michael Freedman ◽  
Joel Hass ◽  
Peter Scott


2019 ◽  
Vol 264 ◽  
pp. 21-26
Author(s):  
Kazuhiro Ichihara ◽  
Makoto Ozawa ◽  
J. Hyam Rubinstein




1999 ◽  
Vol 352 (2) ◽  
pp. 655-677 ◽  
Author(s):  
Elizabeth Finkelstein ◽  
Yoav Moriah


2018 ◽  
Vol 39 (11) ◽  
pp. 3136-3143 ◽  
Author(s):  
CHRISTOFOROS NEOFYTIDIS ◽  
SHICHENG WANG

We study the effect of the mapping class group of a reducible 3-manifold $M$ on each incompressible surface that is invariant under a self-homeomorphism of $M$ . As an application of this study we answer a question of F. Rodriguez Hertz, M. Rodriguez Hertz, and R. Ures: a reducible 3-manifold admits an Anosov torus if and only if one of its prime summands is either the 3-torus, the mapping torus of $-\text{id}$ , or the mapping torus of a hyperbolic automorphism.



1999 ◽  
Vol 96 (2) ◽  
pp. 153-170 ◽  
Author(s):  
Elizabeth Finkelstein ◽  
Yoav Moriah


Sign in / Sign up

Export Citation Format

Share Document