A class of counterexamples to a conjecture on diameter critical graphs

Author(s):  
V. Krishnamoorthy ◽  
R. Nandakumar

1979 ◽  
Vol 28 (3) ◽  
pp. 223-229 ◽  
Author(s):  
Louis Caccetta ◽  
Roland Häggkvist


1971 ◽  
Vol 22 (5) ◽  
pp. 544-552 ◽  
Author(s):  
N. P. Khomenko ◽  
N. A. Ostroverkhii


2016 ◽  
Vol 117 ◽  
pp. 34-58 ◽  
Author(s):  
Po-Shen Loh ◽  
Jie Ma


Author(s):  
János Barát ◽  
Géza Tóth

AbstractThe crossing number of a graph G is the minimum number of edge crossings over all drawings of G in the plane. A graph G is k-crossing-critical if its crossing number is at least k, but if we remove any edge of G, its crossing number drops below k. There are examples of k-crossing-critical graphs that do not have drawings with exactly k crossings. Richter and Thomassen proved in 1993 that if G is k-crossing-critical, then its crossing number is at most $$2.5\, k+16$$ 2.5 k + 16 . We improve this bound to $$2k+8\sqrt{k}+47$$ 2 k + 8 k + 47 .



COMBINATORICA ◽  
2021 ◽  
Author(s):  
Jie Ma ◽  
Tianchi Yang
Keyword(s):  


2010 ◽  
Vol 38 (1-2) ◽  
pp. 100-120 ◽  
Author(s):  
József Balogh ◽  
Jane Butterfield


2017 ◽  
Vol 86 (1) ◽  
pp. 122-136 ◽  
Author(s):  
Daniel W. Cranston ◽  
Landon Rabern
Keyword(s):  


2011 ◽  
Vol 159 (1) ◽  
pp. 46-52 ◽  
Author(s):  
Moo Young Sohn ◽  
Dongseok Kim ◽  
Young Soo Kwon ◽  
Jaeun Lee


2018 ◽  
Vol 15 (2) ◽  
pp. 190-196 ◽  
Author(s):  
P. Kaemawichanurat ◽  
T. Jiarasuksakun


2014 ◽  
Vol 30 (4) ◽  
pp. 696-702 ◽  
Author(s):  
Si Zhong Zhou ◽  
Zhi Ren Sun
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document