scholarly journals Inclusive and exclusive neutrino-nucleus cross sections and the reconstruction of the interaction kinematics

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
B. Bourguille ◽  
J. Nieves ◽  
F. Sánchez

Abstract We present a full kinematic analysis of neutrino-nucleus charged current quasielastic interactions based on the Local Fermi Gas model and the Random Phase Approximation. The model was implemented in the NEUT Monte Carlo framework, which allows us to investigate potentially measurable observables, including hadron distributions. We compare the predictions simultaneously to the most recent T2K and MINERvA charged current (CC) inclusive, CC0π and transverse kinematic-imbalance variable results. We pursuit a microscopic interpretation of the relevant reaction mechanisms, with the aim to achieving in neutrino oscillation experiments a correct reconstruction of the incoming neutrino kinematics, free of conceptual biasses. Such study is of the utmost importance for the ambitious experimental program which is underway to precisely determine neutrino properties, test the three-generation paradigm, establish the order of mass eigenstates and investigate leptonic CP violation.

2019 ◽  
Vol 18 ◽  
pp. 187
Author(s):  
V. Tsakstara ◽  
T. S. Kosmas ◽  
J. Sinatkas

In current probes searching for rare event processes, appropriate nuclear targets are employed (in the COBRA double-beta decay detector the CdZnTe semiconductor is used). In this work the response of such detectors to various low-energy neutrino spectra is explored starting from state-by-state calculations of the neutrino-nucleus reactions cross sections obtained by using the quasi particle random phase approximation (QRPA) based on realistic two-body residual interactions. As a concrete example, we examine the response of 64Zn isotope to low energy supernova neutrinos.


2022 ◽  
Author(s):  
Huseynqulu Quliyev ◽  
Nilufer Demirci Saygı ◽  
Ekber Guliyev ◽  
Ali Akbar Kuliev

Abstract The excitation of pygmy dipole resonance (PDR) and giant dipole resonance (GDR) in even-even 154-164Dy isotopes is examined through quasiparticle random-phase approximation (QRPA) with the effective interactions that restores the broken translational and Galilean invariances. In each isotope, an electric response emerges by showing ample distribution at energies below and above 10 MeV. We, therefore, study the transition cross sections and probabilities, photon strength functions, transition strengths, isospin character, and collectivity of the predicted E1 responses.


2009 ◽  
Vol 87 (1) ◽  
pp. 5-8 ◽  
Author(s):  
S T Manson

The relativistic-random-phase approximation (RRPA) methodology, developed by Walter Johnson and his collaborators, has been used extensively over the past three decades to calculate various aspects of the atomic photoionization process, cross sections, and branching ratios along with dipole and nondipole contributions to the photoelectron angular distribution. In this paper, some of the progress made in our understanding of the photoionization process as a result of RRPA calculations is reviewed.PACS No.: 32.80.Fb


1974 ◽  
Vol 52 (4) ◽  
pp. 349-354 ◽  
Author(s):  
N. A. Cherepkov ◽  
L. V. Chernysheva ◽  
V. Radojević ◽  
I. Pavlin

Photoionization cross sections for the outer shell of the nitrogen atom ground state are calculated in the single-particle Hartree–Fock approximation and, in order to take into account many-electron correlations, also in the Random Phase Approximation with Exchange (RPAE). To be able to apply the RPAE, its modification for the half-filled shell atom, such as nitrogen atom, is presented. Calculation of length and velocity forms of the cross section in both approximations are compared with the available experimental data, and a good agreement is obtained. It has been found that in the RPAE the influence of many-electron correlations in a nitrogen atom is not great, but it is very important since, in contrast to the Hartree–Fock approximation, it results in the validity of the sum rule and the coincidence of the length and velocity forms of the cross sections, in agreement with the requirement of the general theory. The angular distribution of photoelectrons is also calculated in the RPAE, which has not been measured so far.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
P. C. Divari

The total cross sections as well as the neutrino event rates are calculated in the charged current neutrino and antineutrino scattering off132Xe isotope at neutrino energiesEv<100 MeV. Transitions to excited nuclear states are calculated in the framework of quasiparticle random-phase approximation. The contributions from different multipoles are shown for various neutrino energies. Flux-averaged cross sections are obtained by convolving the cross sections with a two-parameter Fermi-Dirac distribution. The flux-averaged cross sections are also calculated using terrestrial neutrino sources based on conventional sources (muon decay at rest) or on low-energy beta-beams.


2020 ◽  
Vol 239 ◽  
pp. 07005
Author(s):  
Hiroaki Utsunomiya ◽  
Stephane Goriely ◽  
Therese Renstrøm ◽  
Gry M. Tveten ◽  
Takashi Ari-izumi ◽  
...  

The γ-ray strength function (γSF) is a nuclear quantity that governs photoabsorption in (γ, n) and photoemission in (n, γ) reactions. Within the framework of the γ-ray strength function method, we use (γ, n) cross sections as experimental constraints on the γSF from the Hartree-Fock-Bogolyubov plus quasiparticle-random phase approximation based on the Gogny D1M interaction for E1 and M1 components. The experimentally constrained γSF is further supplemented with the zero-limit M1 and E1 strengths to construct the downward γSF with which (n, γ) cross sections are calculated. We investigate (n, γ) cross sections in the context of astrophysical applications over the nickel and barium isotopic chains along the s-process path.


Sign in / Sign up

Export Citation Format

Share Document