Some Integral Representation for Meta-Monogenic Function in Clifford Algebras Depending on Parameters

2013 ◽  
Vol 23 (4) ◽  
pp. 793-813 ◽  
Author(s):  
Cristina Balderrama ◽  
Antonio Di Teodoro ◽  
Adrian Infante
2020 ◽  
Vol 17 (3) ◽  
pp. 365-371
Author(s):  
Anatoliy Pogorui ◽  
Tamila Kolomiiets

This paper deals with studying some properties of a monogenic function defined on a vector space with values in the Clifford algebra generated by the space. We provide some expansions of a monogenic function and consider its application to study solutions of second-order partial differential equations.


2020 ◽  
Vol 13 (5) ◽  
pp. 871-878
Author(s):  
Richard G. Chandler ◽  
Nicholas Engel
Keyword(s):  

Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 984
Author(s):  
Pedro J. Miana ◽  
Natalia Romero

Generalized Laguerre polynomials, Ln(α), verify the well-known Rodrigues’ formula. Using Weyl and Riemann–Liouville fractional calculi, we present several fractional generalizations of Rodrigues’ formula for generalized Laguerre functions and polynomials. As a consequence, we give a new addition formula and an integral representation for these polynomials. Finally, we introduce a new family of fractional Lebesgue spaces and show that some of these special functions belong to them.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Adam Lecko ◽  
Gangadharan Murugusundaramoorthy ◽  
Srikandan Sivasubramanian

AbstractIn this paper, we define and study a class of analytic functions in the unit disc by modification of the well-known Robertson’s analytic formula for starlike functions with respect to a boundary point combined with subordination. An integral representation and growth theorem are proved. Early coefficients and the Fekete–Szegö functional are also estimated.


Sign in / Sign up

Export Citation Format

Share Document