Boundedness of Integral Operators in Generalized Weighted Grand Lebesgue Spaces with Non-doubling Measures

2021 ◽  
Vol 18 (2) ◽  
Author(s):  
Vakhtang Kokilashvili ◽  
Alexander Meskhi
2010 ◽  
Author(s):  
Vakhtang Kokilashvili ◽  
Stefan Samko ◽  
Theodore E. Simos ◽  
George Psihoyios ◽  
Ch. Tsitouras

2010 ◽  
Vol 106 (2) ◽  
pp. 283 ◽  
Author(s):  
Oscar Blasco ◽  
Vicente Casanova ◽  
Joaquín Motos

Given a metric measure space $(X,d,\mu)$, a weight $w$ defined on $(0,\infty)$ and a kernel $k_w(x,y)$ satisfying the standard fractional integral type estimates, we study the boundedness of the operators $K_w f(x)=\int_X k_w(x,y)f(y)\,d\mu(y)$ and $\tilde K_w f(x)=\int_X (k_w(x,y)-k_w(x_0,y))f(y)\,d\mu(y)$ on Lebesgue spaces $L^p(\mu)$ and generalized Lipschitz spaces $\mathrm{Lip}_\phi$, respectively, for certain range of the parameters depending on the $n$-dimension of $\mu$ and some indices associated to the weight $w$.


2017 ◽  
Vol 28 (2) ◽  
pp. 516-526 ◽  
Author(s):  
Pankaj Jain ◽  
Monika Singh ◽  
Arun Pal Singh

Author(s):  
С.М. Умархаджиев

Получены достаточные и необходимые условия на ядро и грандизатор для ограниченности односторонних интегральных операторов с однородными ядрами в гранд-пространствах Лебега на~$\mathbb{R}_+$ и $\mathbb{R}^n$, а также получены двусторонние оценки гранд-норм таких операторов. Кроме того, в~случае радиального ядра получены двусторонние оценки для норм многомерных операторов в~терминах сферических средних и показано, что этот результат сильнее, чем неравенства для норм операторов с нерадиальным ядром.


Author(s):  
S.G. Samko ◽  
S.M. Umarkhadzhiev

The so called grand spaces nowadays are one of the main objects in the theory of function spaces. Grand Lebesgue spaces were introduced by T. Iwaniec and C. Sbordone in the case of sets $\Omega$ with finite measure $|\Omega|<\infty$, and by the authors in the case $|\Omega|=\infty$. The latter is based on introduction of the notion of grandizer. The idea of "grandization" was also applied in the context of Morrey spaces. In this paper we develop the idea of grandization to more general Morrey spaces $L^{p,q,w}(\mathbb{R}^n)$, known as Morrey type spaces. We introduce grand Morrey type spaces, which include mixed and partial grand versions of such spaces. The mixed grand space is defined by the norm $$ \sup_{\varepsilon,\delta} \varphi(\varepsilon,\delta)\sup_{x\in E} \left(\int\limits_{0}^{\infty}{w(r)^{q-\delta}}b(r)^{\frac{\delta}{q}} \left(\,\int\limits_{|x-y|<r}\big|f(y)\big|^{p-\varepsilon} a(y)^{\frac{\varepsilon}{p}}\,dy\right)^{\frac{q-\delta}{p-\varepsilon}} \frac{dr}{r}\right)^{\frac{1}{q-\varepsilon}} $$ with the use of two grandizers $a$ and $b$. In the case of grand spaces, partial with respect to the exponent $q$, we study the boundedness of some integral operators. The class of these operators contains, in particular, multidimensional versions of Hardy type and Hilbert operators.


2019 ◽  
Vol 489 (4) ◽  
pp. 344-346
Author(s):  
V. M. Kokilashvili

In this paper, the weighted grand Lebesgue spaces with mixed-norms are introduced and boundedness criteria in these spaces of strong maximal functions and Riesz transforms are presented.


Sign in / Sign up

Export Citation Format

Share Document