Effect of Sliding Rate on the Activity of Acoustic Emission During Stable Sliding

2003 ◽  
Vol 160 (7) ◽  
pp. 1163-1189 ◽  
Author(s):  
N. Kato ◽  
K. Yamamoto ◽  
T. Hirasawa ◽  
Y. Yabe
2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Yang Liu ◽  
Cai-Ping Lu ◽  
Tong-bin Zhao ◽  
Heng Zhang

Our experimental work was designed to explore the particle size effect of simulated fault gouge on slip characteristics by the conventional double-direct shear friction configuration combined with acoustic emission (AE). The following conclusions were drawn: (1) smaller particles allow for an initially higher compaction rate at a higher speed and longer duration for force chain formation and destruction. The larger the particle size is, the higher the slipping displacement rate is; (2) the smaller the particle size is, the larger the friction coefficient is, and thus the higher the fault strength is. In addition, the larger the shear velocity is, the higher the fault strength is; (3) the smaller the particle size is, the higher the shear stress drop generated by the stick-slip is, and the stronger the dynamic slip intensity for a stick-slip period is; and (4) surface defects of forcing blocks possibly help to embed foregoing “stability” and “stable sliding” into the normal stick-slip stage. Especially, the “stable sliding” is possibly related to formation of stubborn force chains. These findings may shed some insights into further clarification of slipping characteristics and discrimination of precursory signs of fault dynamic instability with different-sized gouge particles.


2001 ◽  
Vol 148 (4) ◽  
pp. 169-177 ◽  
Author(s):  
R.P. Dalton ◽  
P. Cawley ◽  
M.J. Lowe
Keyword(s):  

2020 ◽  
Vol 92 (2) ◽  
pp. 20401
Author(s):  
Evgeniy Dul'kin ◽  
Michael Roth

In relaxor (1-x)SrTiO3-xBiFeO3 ferroelectrics ceramics (x = 0.2, 0.3 and 0.4) both intermediate temperatures and Burns temperatures were successfully detected and their behavior were investigated in dependence on an external bias field using an acoustic emission. All these temperatures exhibit a non-trivial behavior, i.e. attain the minima at some threshold fields as a bias field enhances. It is established that the threshold fields decrease as x increases in (1-x)SrTiO3-xBiFeO3, as it previously observed in (1-x)SrTiO3-xBaTiO3 (E. Dul'kin, J. Zhai, M. Roth, Phys. Status Solidi B 252, 2079 (2015)). Based on the data of the threshold fields the mechanisms of arising of random electric fields are discussed and their strengths are compared in both these relaxor ferroelectrics.


Sign in / Sign up

Export Citation Format

Share Document