scholarly journals Prognostic value of global deep white matter DTI metrics for 1-year outcome prediction in ICU traumatic brain injury patients: an MRI-COMA and CENTER-TBI combined study

Author(s):  
Louis Puybasset ◽  
Vincent Perlbarg ◽  
Jean Unrug ◽  
Didier Cassereau ◽  
Damien Galanaud ◽  
...  
2017 ◽  
Vol 49 (4) ◽  
pp. 248-257 ◽  
Author(s):  
Antti Tolonen ◽  
Mika O. K. Särkelä ◽  
Riikka S. K. Takala ◽  
Ari Katila ◽  
Janek Frantzén ◽  
...  

Monitoring of quantitative EEG (QEEG) parameters in the intensive care unit (ICU) can aid in the treatment of traumatic brain injury (TBI) patients by complementing visual EEG review done by an expert. We performed an explorative study investigating the prognostic value of 59 QEEG parameters in predicting the outcome of patients with severe TBI. Continuous EEG recordings were done on 28 patients with severe TBI in the ICU of Turku University Hospital. We computed a set of QEEG parameters for each patient, and correlated these to patient outcome, measured by dichotomized Glasgow Outcome Scale (GOS) at a follow-up visit between 6 and 12 months, using area under receiver operating characteristic curve (AUC) as a nonlinear correlation measure. For 17 of the 59 QEEG parameters (28.8%), the AUC differed significantly from 0.5, most of these parameters measured EEG power or variability. The best QEEG parameters for outcome prediction were alpha power (AUC = 0.87, P < .01) and variability of the relative fast theta power (AUC = 0.84, P < .01). The results of this study indicate that QEEG parameters provide useful information for predicting outcome in severe TBI. Novel QEEG parameters with potential in outcome prediction were found, the prognostic value of these parameters should be confirmed in later studies. The results also provide further evidence of the usefulness of parameters studied in preexisting studies.


Brain Injury ◽  
2016 ◽  
Vol 30 (7) ◽  
pp. 864-871 ◽  
Author(s):  
Alexandra L. Clark ◽  
Scott F. Sorg ◽  
Dawn M. Schiehser ◽  
Norman Luc ◽  
Mark W. Bondi ◽  
...  

2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 886-887
Author(s):  
Andrei Irimia ◽  
Ammar Dharani ◽  
Van Ngo ◽  
David Robles ◽  
Kenneth Rostowsky

Abstract Mild traumatic brain injury (mTBI) affects white matter (WM) integrity and accelerates neurodegeneration. This study assesses the effects of age, sex, and cerebral microbleed (CMB) load as predictors of WM integrity in 70 subjects aged 18-77 imaged acutely and ~6 months after mTBI using diffusion tensor imaging (DTI). Two-tensor unscented Kalman tractography was used to segment and cluster 73 WM structures and to map changes in their mean fractional anisotropy (FA), a surrogate measure of WM integrity. Dimensionality reduction of mean FA feature vectors was implemented using principal component (PC) analysis, and two prominent PCs were used as responses in a multivariate analysis of covariance. Acutely and chronically, older age was significantly associated with lower FA (F2,65 = 8.7, p &lt; .001, η2 = 0.2; F2,65 = 12.3, p &lt; .001, η2 = 0.3, respectively), notably in the corpus callosum and in dorsolateral temporal structures, confirming older adults’ WM vulnerability to mTBI. Chronically, sex was associated with mean FA (F2,65 = 5.0, p = 0.01, η2 = 0.1), indicating males’ greater susceptibility to WM degradation. Acutely, a significant association was observed between CMB load and mean FA (F2,65 = 5.1, p = 0.009, η2 = 0.1), suggesting that CMBs reflect the acute severity of diffuse axonal injury. Together, these findings indicate that older age, male sex, and CMB load are risk factors for WM degeneration. Future research should examine how sex- and age-mediated WM degradation lead to cognitive decline and connectome degeneration after mTBI.


2011 ◽  
Vol 38 (1) ◽  
pp. 25-32 ◽  
Author(s):  
M. M. Lesko ◽  
O. Bouamra ◽  
S. O’Brien ◽  
F. Lecky

2012 ◽  
Vol 18 (6) ◽  
pp. 1006-1018 ◽  
Author(s):  
Kimberly D.M. Farbota ◽  
Aparna Sodhi ◽  
Barbara B. Bendlin ◽  
Donald G. McLaren ◽  
Guofan Xu ◽  
...  

AbstractAfter traumatic injury, the brain undergoes a prolonged period of degenerative change that is paradoxically accompanied by cognitive recovery. The spatiotemporal pattern of atrophy and the specific relationships of atrophy to cognitive changes are ill understood. The present study used tensor-based morphometry and neuropsychological testing to examine brain volume loss in 17 traumatic brain injury (TBI) patients and 13 controls over a 4-year period. Patients were scanned at 2 months, 1 year, and 4 years post-injury. High-dimensional warping procedures were used to create change maps of each subject's brain for each of the two intervals. TBI patients experienced volume loss in both cortical areas and white matter regions during the first interval. We also observed continuing volume loss in extensive regions of white matter during the second interval. Neuropsychological correlations indicated that cognitive tasks were associated with subsequent volume loss in task-relevant regions. The extensive volume loss in brain white matter observed well beyond the first year post-injury suggests that the injured brain remains malleable for an extended period, and the neuropsychological relationships suggest that this volume loss may be associated with subtle cognitive improvements. (JINS, 2012,18, 1–13)


Brain Injury ◽  
2016 ◽  
Vol 30 (12) ◽  
pp. 1501-1514 ◽  
Author(s):  
Ramtilak Gattu ◽  
Faith W. Akin ◽  
Anthony T. Cacace ◽  
Courtney D. Hall ◽  
Owen D. Murnane ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document