scholarly journals Interpreting the compositional truth predicate in models of arithmetic

Author(s):  
Cezary Cieśliński

AbstractWe present a construction of a truth class (an interpretation of a compositional truth predicate) in an arbitrary countable recursively saturated model of first-order arithmetic. The construction is fully classical in that it employs nothing more than the classical techniques of formal proof theory.

2008 ◽  
Vol 73 (3) ◽  
pp. 824-830 ◽  
Author(s):  
Fredrik Engström

AbstractLet (M, )⊨ ACA0 be such that , the collection of all unbounded sets in , admits a definable complete ultrafilter and let T be a theory extending first order arithmetic coded in such that M thinks T is consistent. We prove that there is an end-extension N ⊨ T of M such that the subsets of M coded in N are precisely those in . As a special case we get that any Scott set with a definable ultrafilter coding a consistent theory T extending first order arithmetic is the standard system of a recursively saturated model of T.


1986 ◽  
Vol 51 (1) ◽  
pp. 222-224 ◽  
Author(s):  
Julia F. Knight

The complete diagram of a structure , denoted by Dc(), is the set of all sentences true in the structure (, a)a∈. A structure is said to be resplendent if for every sentence θ involving a new relation symbol R in addition to symbols occurring in Dc(), if θ is consistent with Dc(), then there is a relation P on such that (see[1]).Baldwin asked whether a homogeneous recursively saturated structure is necessarily resplendent. Here it is shown that this need not be the case. It is shown that if is an uncountable homogeneous resplendent model of an unstable theory, then must be saturated. The proof is related to the proof in [5] that an uncountable homogeneous recursively saturated model of first order Peano arithmetic must be saturated. The example for Baldwin's question is an uncountable homogeneous model for a particular unstable theory, such that is recursively saturated and omits some type. (The continuum hypothesis is needed to show the existence of such a model in power ℵ1.)The proof of the main result requires two lemmas.


Author(s):  
Ali Enayat

AbstractA model $${\mathcal {M}}$$ M of ZF is said to be condensable if $$ {\mathcal {M}}\cong {\mathcal {M}}(\alpha )\prec _{\mathbb {L}_{{\mathcal {M}}}} {\mathcal {M}}$$ M ≅ M ( α ) ≺ L M M for some “ordinal” $$\alpha \in \mathrm {Ord}^{{\mathcal {M}}}$$ α ∈ Ord M , where $$\mathcal {M}(\alpha ):=(\mathrm {V}(\alpha ),\in )^{{\mathcal {M}}}$$ M ( α ) : = ( V ( α ) , ∈ ) M and $$\mathbb {L}_{{\mathcal {M}}}$$ L M is the set of formulae of the infinitary logic $$\mathbb {L}_{\infty ,\omega }$$ L ∞ , ω that appear in the well-founded part of $${\mathcal {M}}$$ M . The work of Barwise and Schlipf in the 1970s revealed the fact that every countable recursively saturated model of ZF is cofinally condensable (i.e., $${\mathcal {M}}\cong {\mathcal {M}}(\alpha ) \prec _{\mathbb {L}_{{\mathcal {M}}}}{\mathcal {M}}$$ M ≅ M ( α ) ≺ L M M for an unbounded collection of $$\alpha \in \mathrm {Ord}^{{\mathcal {M}}}$$ α ∈ Ord M ). Moreover, it can be readily shown that any $$\omega $$ ω -nonstandard condensable model of $$\mathrm {ZF}$$ ZF is recursively saturated. These considerations provide the context for the following result that answers a question posed to the author by Paul Kindvall Gorbow.Theorem A.Assuming a modest set-theoretic hypothesis, there is a countable model $${\mathcal {M}}$$ M of ZFC that is bothdefinably well-founded (i.e., every first order definable element of $${\mathcal {M}}$$ M is in the well-founded part of $$\mathcal {M)}$$ M ) andcofinally condensable. We also provide various equivalents of the notion of condensability, including the result below.Theorem B.The following are equivalent for a countable model$${\mathcal {M}}$$ M of $$\mathrm {ZF}$$ ZF : (a) $${\mathcal {M}}$$ M is condensable. (b) $${\mathcal {M}}$$ M is cofinally condensable. (c) $${\mathcal {M}}$$ M is nonstandard and $$\mathcal {M}(\alpha )\prec _{\mathbb {L}_{{\mathcal {M}}}}{\mathcal {M}}$$ M ( α ) ≺ L M M for an unbounded collection of $$ \alpha \in \mathrm {Ord}^{{\mathcal {M}}}$$ α ∈ Ord M .


2010 ◽  
Vol 16 (3) ◽  
pp. 345-358 ◽  
Author(s):  
Samuel Coskey ◽  
Roman Kossak

AbstractWe observe that the classification problem for countable models of arithmetic is Borel complete. On the other hand, the classification problems for finitely generated models of arithmetic and for recursively saturated models of arithmetic are Borel; we investigate the precise complexity of each of these. Finally, we show that the classification problem for pairs of recursively saturated models and for automorphisms of a fixed recursively saturated model are Borel complete.


2016 ◽  
Vol 10 (1) ◽  
pp. 187-202 ◽  
Author(s):  
CEZARY CIEŚLIŃSKI ◽  
MATEUSZ ŁEŁYK ◽  
BARTOSZ WCISŁO

AbstractWe show that a typed compositional theory of positive truth with internal induction for total formulae (denoted by PTtot) is not semantically conservative over Peano arithmetic. In addition, we observe that the class of models of PA expandable to models of PTtot contains every recursively saturated model of arithmetic. Our results point to a gap in the philosophical project of describing the use of the truth predicate in model-theoretic contexts.


1982 ◽  
Vol 47 (4) ◽  
pp. 833-840 ◽  
Author(s):  
Julia Knight ◽  
Mark Nadel

A set J of Turing degrees is called an ideal if (1) J ≠ ∅, (2) for any pair of degrees ã, , if ã, ϵ J, then ã ⋃ ϵJ, and (3) for any ⋃ ϵ J and any , if < ⋃, then ϵ J. A set J of degrees is said to be closed if for any theory T with a set of axioms of degree in J, T has a completion of degree in J.Closed ideals of degrees arise naturally in the following way. If is a recursively saturated structure, let I() = { for some ā ϵ }. Let D() = {: is recursive in d-saturated}. (Recursive in d-saturation is defined like recursive saturation except that the sets of formulas considered are recursive in d.) These two sets of degrees were investigated in [2]. It was shown that if is a recursively saturated model of P, Pr = Th(ω, +), or Pr′ = Th(Z, +, 1), then I() = D(), and this set is a closed ideal. Any closed ideal J can be represented as I() = D() for some recursively saturated model of Pr′. For sets J of power at most ℵ1, Pr′ can be replaced by P.Assuming CH, all closed ideals have power at most ℵ1, but if CH fails, there are closed ideals of power greater than ℵ1, and it is not known whether these can be represented as I() = D() for a recursively saturated model of P.In the present paper, it will first be shown that information about representation of closed ideals provides new information about an old problem of MacDowell and Specker [6] and extends an old result of Scott [8] in a natural way. It will also be shown that the representation results from [2] answer a problem of Friedman [1]. This part of the paper is aimed at convincing the reader that representation problems are worth investigating.


1982 ◽  
Vol 47 (3) ◽  
pp. 587-604 ◽  
Author(s):  
Julia Knight ◽  
Mark Nadel

If is a countable recursively saturated structure and T is a recursively axiomatizable theory that is consistent with Th(), then it is well known that can be expanded to a recursively saturated model of T [7, p. 186]. This is what has made recursively saturated models useful in model theory. Recursive saturation is the weakest notion of saturation for which this expandability result holds. In fact, if is a countable model of Pr = Th(ω, +), then can be expanded to a model of first order Peano arithmetic P just in case is recursively saturated (see [3]).In this paper we investigate two natural sets of Turing degrees that tell a good deal about the expandability of a given structure. If is a recursively saturated structure, I() consists of the degrees of sets that are recursive in complete types realized in . The second set of degrees, D(), consists of the degrees of sets S such that is recursive in S-saturated. In general, I() ⊆ D(). Moreover, I() is obviously an “ideal” of degrees. For countable structures , D() is “closed” in the following sense: For any class C ⊆ 2ω, if C is co-r.e. in S for some set S such that , then there is some σ ∈ C such that . For uncountable structures , we do not know whether D() must be closed.


Author(s):  
Wilfried Sieg

Proof theory is a branch of mathematical logic founded by David Hilbert around 1920 to pursue Hilbert’s programme. The problems addressed by the programme had already been formulated, in some sense, at the turn of the century, for example, in Hilbert’s famous address to the First International Congress of Mathematicians in Paris. They were closely connected to the set-theoretic foundations for analysis investigated by Cantor and Dedekind – in particular, to difficulties with the unrestricted notion of system or set; they were also related to the philosophical conflict with Kronecker on the very nature of mathematics. At that time, the central issue for Hilbert was the ‘consistency of sets’ in Cantor’s sense. Hilbert suggested that the existence of consistent sets, for example, the set of real numbers, could be secured by proving the consistency of a suitable, characterizing axiom system, but indicated only vaguely how to give such proofs model-theoretically. Four years later, Hilbert departed radically from these indications and proposed a novel way of attacking the consistency problem for theories. This approach required, first of all, a strict formalization of mathematics together with logic; then, the syntactic configurations of the joint formalism would be considered as mathematical objects; finally, mathematical arguments would be used to show that contradictory formulas cannot be derived by the logical rules. This two-pronged approach of developing substantial parts of mathematics in formal theories (set theory, second-order arithmetic, finite type theory and still others) and of proving their consistency (or the consistency of significant sub-theories) was sharpened in lectures beginning in 1917 and then pursued systematically in the 1920s by Hilbert and a group of collaborators including Paul Bernays, Wilhelm Ackermann and John von Neumann. In particular, the formalizability of analysis in a second-order theory was verified by Hilbert in those very early lectures. So it was possible to focus on the second prong, namely to establish the consistency of ‘arithmetic’ (second-order number theory and set theory) by elementary mathematical, ‘finitist’ means. This part of the task proved to be much more recalcitrant than expected, and only limited results were obtained. That the limitation was inevitable was explained in 1931 by Gödel’s theorems; indeed, they refuted the attempt to establish consistency on a finitist basis – as soon as it was realized that finitist considerations could be carried out in a small fragment of first-order arithmetic. This led to the formulation of a general reductive programme. Gentzen and Gödel made the first contributions to this programme by establishing the consistency of classical first-order arithmetic – Peano arithmetic (PA) – relative to intuitionistic arithmetic – Heyting arithmetic. In 1936 Gentzen proved the consistency of PA relative to a quantifier-free theory of arithmetic that included transfinite recursion up to the first epsilon number, ε0; in his 1941 Yale lectures, Gödel proved the consistency of the same theory relative to a theory of computable functionals of finite type. These two fundamental theorems turned out to be most important for subsequent proof-theoretic work. Currently it is known how to analyse, in Gentzen’s style, strong subsystems of second-order arithmetic and set theory. The first prong of proof-theoretic investigations, the actual formal development of parts of mathematics, has also been pursued – with a surprising result: the bulk of classical analysis can be developed in theories that are conservative over (fragments of) first-order arithmetic.


Sign in / Sign up

Export Citation Format

Share Document