Robotic-arm assisted unicompartmental knee arthroplasty system has a learning curve of 11 cases and increased operating time

Author(s):  
Mei Lin Tay ◽  
Matthew Carter ◽  
Scott M. Bolam ◽  
Nina Zeng ◽  
Simon W. Young
2018 ◽  
Vol 100-B (8) ◽  
pp. 1033-1042 ◽  
Author(s):  
B. Kayani ◽  
S. Konan ◽  
J. R. T. Pietrzak ◽  
S. S. Huq ◽  
J. Tahmassebi ◽  
...  

Aims The primary aim of this study was to determine the surgical team’s learning curve for introducing robotic-arm assisted unicompartmental knee arthroplasty (UKA) into routine surgical practice. The secondary objective was to compare accuracy of implant positioning in conventional jig-based UKA versus robotic-arm assisted UKA. Patients and Methods This prospective single-surgeon cohort study included 60 consecutive conventional jig-based UKAs compared with 60 consecutive robotic-arm assisted UKAs for medial compartment knee osteoarthritis. Patients undergoing conventional UKA and robotic-arm assisted UKA were well-matched for baseline characteristics including a mean age of 65.5 years (sd 6.8) vs 64.1 years (sd 8.7), (p = 0.31); a mean body mass index of 27.2 kg.m2 (sd 2.7) vs 28.1 kg.m2 (sd 4.5), (p = 0.25); and gender (27 males: 33 females vs 26 males: 34 females, p = 0.85). Surrogate measures of the learning curve were prospectively collected. These included operative times, the Spielberger State-Trait Anxiety Inventory (STAI) questionnaire to assess preoperative stress levels amongst the surgical team, accuracy of implant positioning, limb alignment, and postoperative complications. Results Robotic-arm assisted UKA was associated with a learning curve of six cases for operating time (p < 0.001) and surgical team confidence levels (p < 0.001). Cumulative robotic experience did not affect accuracy of implant positioning (p = 0.52), posterior condylar offset ratio (p = 0.71), posterior tibial slope (p = 0.68), native joint line preservation (p = 0.55), and postoperative limb alignment (p = 0.65). Robotic-arm assisted UKA improved accuracy of femoral (p < 0.001) and tibial (p < 0.001) implant positioning with no additional risk of postoperative complications compared to conventional jig-based UKA. Conclusion Robotic-arm assisted UKA was associated with a learning curve of six cases for operating time and surgical team confidence levels but no learning curve for accuracy of implant positioning. Cite this article: Bone Joint J 2018;100-B:1033–42.


2020 ◽  
Vol 102-B (11) ◽  
pp. 1511-1518
Author(s):  
Matthew S. Banger ◽  
William D. Johnston ◽  
Nima Razii ◽  
James Doonan ◽  
Philip J. Rowe ◽  
...  

Aims The aim of this study was to compare robotic arm-assisted bi-unicompartmental knee arthroplasty (bi-UKA) with conventional mechanically aligned total knee arthroplasty (TKA) in order to determine the changes in the anatomy of the knee and alignment of the lower limb following surgery. Methods An analysis of 38 patients who underwent TKA and 32 who underwent bi-UKA was performed as a secondary study from a prospective, single-centre, randomized controlled trial. CT imaging was used to measure coronal, sagittal, and axial alignment of the knee preoperatively and at three months postoperatively to determine changes in anatomy that had occurred as a result of the surgery. The hip-knee-ankle angle (HKAA) was also measured to identify any differences between the two groups. Results The pre- to postoperative changes in joint anatomy were significantly less in patients undergoing bi-UKA in all three planes in both the femur and tibia, except for femoral sagittal component orientation in which there was no difference. Overall, for the six parameters of alignment (three femoral and three tibial), 47% of bi-UKAs and 24% TKAs had a change of < 2° (p = 0.045). The change in HKAA towards neutral in varus and valgus knees was significantly less in patients undergoing bi-UKA compared with those undergoing TKA (p < 0.001). Alignment was neutral in those undergoing TKA (mean 179.5° (SD 3.2°)) while those undergoing bi-UKA had mild residual varus or valgus alignment (mean 177.8° (SD 3.4°)) (p < 0.001). Conclusion Robotic-assisted, cruciate-sparing bi-UKA maintains the natural anatomy of the knee in the coronal, sagittal, and axial planes better, and may therefore preserve normal joint kinematics, compared with a mechanically aligned TKA. This includes preservation of coronal joint line obliquity. HKAA alignment was corrected towards neutral significantly less in patients undergoing bi-UKA, which may represent restoration of the pre-disease constitutional alignment (p < 0.001). Cite this article: Bone Joint J 2020;102-B(11):1511–1518.


2019 ◽  
Vol 101-B (4) ◽  
pp. 435-442 ◽  
Author(s):  
F. Zambianchi ◽  
G. Franceschi ◽  
E. Rivi ◽  
F. Banchelli ◽  
A. Marcovigi ◽  
...  

Aims The purpose of this multicentre observational study was to investigate the association between intraoperative component positioning and soft-tissue balancing on short-term clinical outcomes in patients undergoing robotic-arm assisted unicompartmental knee arthroplasty (UKA). Patients and Methods Between 2013 and 2016, 363 patients (395 knees) underwent robotic-arm assisted UKAs at two centres. Pre- and postoperatively, patients were administered Knee Injury and Osteoarthritis Score (KOOS) and Forgotten Joint Score-12 (FJS-12). Results were stratified as “good” and “bad” if KOOS/FJS-12 were more than or equal to 80. Intraoperative, post-implantation robotic data relative to CT-based components placement were collected and classified. Postoperative complications were recorded. Results Following exclusions and losses to follow-up, 334 medial robotic-arm assisted UKAs were assessed at a mean follow-up of 30.0 months (8.0 to 54.9). None of the measured parameters were associated with overall KOOS outcome. Correlations were described between specific KOOS subscales and intraoperative, post-implantation robotic data, and between FJS-12 and femoral component sagittal alignment. Three UKAs were revised, resulting in 99.0% survival at two years (95% confidence interval (CI) 97.9 to 100.0). Conclusion Although little correlation was found between intraoperative robotic data and overall clinical outcome, surgeons should consider information regarding 3D component placement and soft-tissue balancing to improve patient satisfaction. Reproducible and precise placement of components has been confirmed as essential for satisfactory clinical outcome. Cite this article: Bone Joint J 2019;101-B:435–442.


2021 ◽  
Vol 11 (1) ◽  
pp. 220
Author(s):  
Christopher Wu ◽  
Nobuei Fukui ◽  
Yen-Kuang Lin ◽  
Ching-Yu Lee ◽  
Shih-Hsiang Chou ◽  
...  

Robotic-arm-assisted unicompartmental knee arthroplasty (RUKA) was developed to increase the accuracy of bone alignment and implant positioning. This retrospective study explored whether RUKA has more favorable overall outcomes than conventional unicompartmental knee arthroplasty (CUKA). A total of 158 patients with medial compartment osteoarthritis were recruited, of which 85 had undergone RUKA with the Mako system and 73 had undergone CUKA. The accuracy of component positioning and bone anatomical alignment was compared using preoperative and postoperative radiograph. Clinical outcomes were evaluated using questionnaires, which the patients completed preoperatively and then postoperatively at six months, one year, and two years. In total, 52 patients from the RUKA group and 61 from the CUKA group were eligible for analysis. The preoperative health scores and Kellgren–Lawrence scores were higher in the RUKA group. RUKA exhibited higher implant positioning accuracy, thus providing a superior femoral implant angle, properly aligned implant placement, and a low rate of overhang. RUKA also achieved higher accuracy in bone anatomical alignment (tibial axis angle and anatomical axis angle) than CUKA, but surgical time was longer, and blood loss was greater. No significant differences were observed in the clinical outcomes of the two procedures.


2018 ◽  
Vol 32 (02) ◽  
pp. 180-185 ◽  
Author(s):  
Jose Matas-Diez ◽  
Esther Carbo-Laso ◽  
Ruben Perez-Mañanes ◽  
Javier Vaquero-Martín ◽  
Pablo Sanz-Ruiz

AbstractThe true value of use of patient-specific instrumentation (PSI) systems by inexperienced surgeons during their learning curve to improve the clinical and radiographic outcome of unicompartmental knee arthroplasty (UKA) has not been previously studied. Fifty patients with a mean age of 64.3 years undergoing surgery for Oxford UKA were prospectively divided into two groups. Twenty-five patients were operated on by a surgeon with no prior experience in UKA using a PSI system and the other 25 patients by an experienced surgeon using a conventional procedure. Patients were scored using joint range of motion (ROM), the Knee Society Score (KSS), the Knee Injury and Osteoarthritis Outcome Score (KOOS), and the 12-item Short-Form (SF-12) before and 3 months and 2 years after surgery. Impact of use of PSI was measured by comparing clinical and radiographic outcome, complications, and implant survival. No evidence of poorer clinical outcome was seen in any subscale of KSS, KOOS, and SF-12 for inexperienced surgeons using PSI (p = 0.45, p = 0.32, and p = 0.61, respectively). No difference was found between the two procedures in precision of radiographic alignment of components (p = 0.53). No complication occurred in any group. PSI may improve precision of component alignment during the learning curve of surgeons, thus achieving functional results similar to those of more experienced surgeons using a conventional procedure.


10.29007/9zzs ◽  
2019 ◽  
Author(s):  
Christina Cool ◽  
Keith Needham ◽  
Andréa Coppolecchia ◽  
Anton Khlopas ◽  
Nipun Sodhi ◽  
...  

Background:The purpose of this study was to evaluate hospital admissions for revision surgeries associated with robotic-arm assisted unicompartmental knee arthroplasty (rUKA) vs. manual UKA (mUKA) procedures.Methods:Patients ≥18 years of age who received either a mUKA or a rUKA procedure were candidates for inclusion and were identified by the presence of appropriate billing codes. Procedures performed between March 1st, 2013 and July 31st, 2015 were used to calculate the rate of surgical revisions occurring within 24-months of the index procedure. Following propensity matching, 246 rUKA and 492 mUKA patients were included. Revision rates and the associated costs were compared between the two cohorts. The Mann-Whitney U test, was used to compare continuous variables, and fisher’s exact tests was used to analyze discrete categorical variables.Results:At 24-months following the primary UKA procedure, patients who underwent rUKA had fewer revision procedures (0.81% [2/246] vs. 5.28% [26/492]; p=0.002), shorter mean LOS (2.00 vs. 2.33 days; p&gt;0.05), and incurred lower mean costs for the index stay plus revisions ($26,001 vs. $27,915; p&gt;0.05) than mUKA patients. Length of stay at index, and index costs were also lower for rUKA patients (1.77 vs. 2.02 days; p=.0047) and ($25,786 vs. $26,307; p&gt;0.05).Conclusions:Study results demonstrate that patients who underwent rUKA had fewer revision procedures, shorter LOS, and incurred lower mean costs (although not statistically different) during the index admission and at 24-months post-operative. These results could be important for payers as the prevalence of end-stage knee OA increases alongside the demand for cost-efficient treatments.


Sign in / Sign up

Export Citation Format

Share Document