A new PIV method to measure powder flow velocity in laser metal deposition: an Eulerian-based approach

Author(s):  
Angel-Iván García-Moreno ◽  
Juan-Manuel Alvarado-Orozco ◽  
Juansethi Ibarra-Medina ◽  
Aldo López-Martínez ◽  
Enrique Martínez-Franco
2021 ◽  
Vol 33 (4) ◽  
pp. 042021
Author(s):  
Angel-Iván García-Moreno ◽  
Juan-Manuel Alvarado-Orozco ◽  
Juansethi Ibarra-Medina ◽  
Aldo López-Martínez ◽  
Enrique Martínez-Franco

Author(s):  
Lie Tang ◽  
Jianzhong Ruan ◽  
Robert G. Landers ◽  
Frank Liou

This paper proposes a novel method, called Variable Powder Flow Rate Control (VPFRC), for the regulation of powder flow rate in laser metal deposition processes. The idea of VPFRC is to adjust the powder flow rate to maintain a uniform powder deposition per unit length even when disturbances occur (e.g., the motion system accelerates and decelerates). Dynamic models of the powder delivery system motor and the powder transport system (i.e., five–meter pipe, powder dispenser, and cladding head) are constructed. A general tracking controller is then designed to track variable powder flow rate references. Since the powder flow rate at the nozzle exit cannot be directly measured, it is estimated using the powder transport system model. The input to this model is the DC motor rotation speed, which is estimated on–line using a Kalman filter. Experiments are conducted to examine the performance of the proposed control methodology. The experimental results demonstrate that the VPFRC method is successful in maintaining a uniform track morphology, even when the motion system accelerates and decelerates.


2014 ◽  
Vol 1016 ◽  
pp. 177-182 ◽  
Author(s):  
Mutiu F. Erinosho ◽  
Esther Titilayo Akinlabi ◽  
Sisa Pityana

—Pure copper was deposited with Ti6Al4V alloy via laser metal deposition (LMD) process to produce Ti6Al4V/Cu composites. This paper reports the effect of powder flow rate (PFR) and gas flow rate (GFR) of laser metal deposited Ti6Al4V/Cu composites. The deposited samples were characterised through the evolving microstructure and microhardness. It was observed that the PFR and GFR have an influence on the percentage of porosity present in the samples. The higher the flow rates of the powder and the gas, the higher the degree of porosity and vice versa. The widmanstettan structures were observed to be finer as the flow rate reduces which in turn causes a decrease in the hardness values of the deposited composites. The hardness values varied between HV381.3 ± 60 and HV447.3 ± 49.


Author(s):  
Lie Tang ◽  
Jianzhong Ruan ◽  
Robert G. Landers ◽  
Frank Liou

This paper proposes a novel method, called variable powder flow rate control (VPFRC), for the regulation of powder flow rate in laser metal deposition processes. The idea of VPFRC is to adjust the powder flow rate to maintain a uniform powder deposition per unit length even when disturbances occur (e.g., the motion system accelerates and decelerates). Dynamic models of the powder delivery system motor and the powder transport system (i.e., 5m pipe, powder dispenser, and cladding head) are constructed. A general tracking controller is then designed to track variable powder flow rate references. Since the powder flow rate at the nozzle exit cannot be directly measured, it is estimated using the powder transport system model. The input to this model is the dc motor rotation speed, which is estimated online using a Kalman filter. Experiments are conducted to examine the performance of the proposed control methodology. The experimental results demonstrate that the VPFRC method is successful in maintaining a uniform track morphology, even when the motion system accelerates and decelerates.


2018 ◽  
Vol 190 ◽  
pp. 02001
Author(s):  
Quanren Zeng ◽  
Yankang Tian ◽  
Zhenhai Xu ◽  
Yi Qin

Laser engineering net-shaping (LENS), based on directed energy deposition (DED), is one of the popular AM technologies for producing fully dense complex metal structural components directly from laser metal deposition without using dies or tooling and hence greatly reduces the lead-time and production cost. However, many factors, such as powder-related and laser-related manufacturing parameters, will affect the final quality of components produced by LENS process, especially the powder flow distribution and thermal history at the substrate. The powder concentration normally determines the density and strength of deposited components; while the thermal behaviours of melt pool mainly determines the cooling rate, residual stress and consequent cracks in deposited components. Trial and errors method is obviously too expensive to afford for diverse applications of different metal materials and various manufacturing input parameters. Numerical simulation of the LENS process will be an effective means to identify reasonable manufacturing parameter sets for producing high quality crack-free components. In this paper, the laser metal powder deposition process of LENS is reported. The gas-powder flow distribution below the deposition nozzle is obtained via CFD simulation. The thermal behaviours of substrate and as-deposited layer/track during the LENS process are investigated by using FEM analysis. Temperature field distributions caused by the moving laser beam and the resultant melt pool on the substrate, are simulated and compared. The research offers a more accurate and practical thermal behaviour model for LENS process, which could be applied to further investigation of the interactions between laser, melt pool and powder particles; it will be particularly useful for manufacturing key components which has more demanding requirement on the components’ functional performance.


Author(s):  
Lie Tang ◽  
Robert G. Landers

A laser metal deposition height control methodology is presented in this paper. The height controller utilizes a particle swarm optimization (PSO) algorithm to estimate model parameters between layers using measured temperature and track height profiles. Using the estimated model, the powder flow rate reference profile, which will produce the desired layer height reference, is then generated using iterative learning control (ILC). The model parameter estimation performance using PSO is evaluated using a four-layer single track deposition, and the powder flow rate reference generation performance using ILC is tested using simulation. The results show that PSO and ILC perform well in estimating model parameters and generating powder flow rate references, respectively. The proposed height control methodology is then tested experimentally for tracking a constant height reference with constant traverse speed and constant laser power. The experimental results indicate that the controller performs well in tracking constant height references in comparison with the widely used fixed process parameter strategy. The application of layer-to-layer height control produces more consistent layer height increment and a more precise track height, which saves machining time and increases powder efficiency.


Sign in / Sign up

Export Citation Format

Share Document