Thermal simulation of the continuous pulse discharge for electro-spark deposition diamond wire saw

Author(s):  
Chengyun Li ◽  
Peiqi Ge ◽  
Wenbo Bi
2021 ◽  
Author(s):  
Chengyun Li ◽  
Peiqi Ge ◽  
Wenbo Bi

Abstract Due to their excellent physical and mechanical properties, third-generation super-hard semiconductor materials (such as SiC, GaN) are widely used in the field of microelectronics. However, due to its ultra-high hardness, the machining is very difficult, which has become the bottleneck of its development. The electro-spark deposition (ESD) process can deposit electrode materials on the substrate under the condition of low heat input to achieve metallurgical bonding between metal materials. And it can improve the wear resistance, corrosion resistance, and repair the size of the workpiece. It has been widely used in the field of surface modification engineering. It can effectively improve the bonding strength of the abrasive grains, and the sawing ability of the wire saw to make the consolidated diamond wire saw by the ESD process. Due to its thin matrix and poor thermal properties, the saw wire is easy to burning or even breaking in the manufacturing process. At present, the selection of pulse interval time in the ESD process is generally determined by the duty factor. However, the pulse interval time selected according to duty factor is difficult to meet the heat dissipation requirements of electro-spark deposition diamond wire saw (ESDDWS). In this paper, two kinds of motion modes of ESDDWS manufacturing are put forward, according to the manufacturing characteristics of ESDDWS. The boundary conditions of the continuous pulse discharge of ESDDWS are established. The thermal simulations of continuous pulse discharge of ESDDWS under two motion modes are analyzed. According to the simulation results, the basis of the value of pulse interval in the ESDDWS process is put forward. The effect of pulse interval time on the mechanical performance of the wire saw is analyzed experimentally. The results show that the discharge interval time selected base on the simulation results can ensure the continuous production of the ESDDWS.


2021 ◽  
Vol 133 ◽  
pp. 105939
Author(s):  
Pengcheng Gao ◽  
Baimei Tan ◽  
Fan Yang ◽  
Hui Li ◽  
Na Bian ◽  
...  

2021 ◽  
Vol 270 ◽  
pp. 118823
Author(s):  
Guangyu Chen ◽  
Yan Li ◽  
Wang Sheng ◽  
Liuqing Huang ◽  
Lizhi Tang ◽  
...  

2021 ◽  
Vol 36 (4) ◽  
pp. 21-32
Author(s):  
Arezou Rasti ◽  
Hamid Ranjkesh Adarmanabadi ◽  
Mohammad Reza Sahlabadi

Nowadays, most mining and quarrying industries utilize a diamond wire saw machine for bench cutting operations. This method uses a metal wire or cable assembled by diamond beads to cut the hard stone into large blocks. Many parameters classified into controllable and uncontrollable parameters affect the performance of the diamond wire saw cutting method. The uncontrollable parameters are related to rock engineering properties, and controllable parameters are related to operational aspects and machine performance. The diamond wire sawing process’s production rate is one of the most critical parameters influencing the design optimization and quarrying cost estimation. The cutting rate and wear rate of diamond beads are the most important factors to evaluate quarries’ production performance. This study aims to determine the effects of different controllable and uncontrollable parameters on different quarries’ production rates. Rock engineering properties like strength, hardness, and abrasivity, and operational aspects, such as cutting angle and drive wheel diameters, are considered as the main factors affecting the production performance of the diamond wire saw method. To discover the influence of these parameters, a detailed investigation in ten quarry operations was carried out. The relation between cutting rate and diamond bead wear with different parameters is estimated. It was observed that different controllable and uncontrollable parameters could increase or decrease the cutting rate and diamond bead wearing. Furthermore, using simple and multiple regression analysis, performance prediction of the cutting rate and wearing of diamond beads was developed, and the best equations were proposed.


2010 ◽  
Vol 431-432 ◽  
pp. 265-268 ◽  
Author(s):  
Yu Fei Gao ◽  
Pei Qi Ge

Based on reciprocating electroplated diamond wire saw (REDWS) slicing experiments, a study on REDWS machining brittle-ductile transition of single crystal silicon was introduced. The machined surfaces and chips were observed by using Scanning Electron Microscope (SEM), and some experimental evidences of the change of material removal mode had been obtained. The experimental results indicate there is a close relationship between material removal mode and the ratio r value of ingot feed speed and wire speed, through controlling and adjusting the r value, the material removal mode can be complete brittle, partial ductile and near-ductile removal.


Sign in / Sign up

Export Citation Format

Share Document