Study of static thermal deformation modeling based on a hybrid CNN-LSTM model with spatiotemporal correlation

Author(s):  
Jiahao Guo ◽  
Qingyu Xiong ◽  
Jing Chen ◽  
Enming Miao ◽  
Chao Wu ◽  
...  
2002 ◽  
Vol 12 (4) ◽  
pp. 271-280 ◽  
Author(s):  
Feng Sun ◽  
Wenfeng Yu ◽  
Zuhai Cheng ◽  
Yaoning Zhang

IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 32634-32649
Author(s):  
Ge Liu ◽  
Guosheng Rui ◽  
Wenbiao Tian ◽  
Liyao Wu ◽  
Tiantian Cui ◽  
...  

Photonics ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 97
Author(s):  
Shengzhe Ji ◽  
Wenfa Huang ◽  
Tao Feng ◽  
Long Pan ◽  
Jiangfeng Wang ◽  
...  

In this paper, a model to predict the thermal effects in a flashlamp-pumped direct-liquid-cooled split-disk Nd:LuAG ceramic laser amplifier has been presented. In addition to pumping distribution, the model calculates thermal-induced wavefront aberration as a function of temperature, thermal stress and thermal deformation in the gain medium. Experimental measurements are carried out to assess the accuracy of the model. We expect that this study will assist in the design and optimization of high-energy lasers operated at repetition rate.


2021 ◽  
Vol 13 (5) ◽  
pp. 168781402110208
Author(s):  
Yuan Zhang ◽  
Lifeng Wang ◽  
Yaodong Zhang ◽  
Yongde Zhang

The thermal deformation of high-speed motorized spindle will affect its reliability, so fully considering its thermal characteristics is the premise of optimal design. In order to study the thermal characteristics of high-speed motorized spindles, a coupled model of thermal-flow-structure was established. Through experiment and simulation, the thermal characteristics of spiral cooling motorized spindle are studied, and the U-shaped cooled motorized spindle is designed and optimized. The simulation results show that when the diameter of the cooling channel is 7 mm, the temperature of the spiral cooling system is lower than that of the U-shaped cooling system, but the radial thermal deformation is greater than that of the U-shaped cooling system. As the increase of the channel diameter of U-shaped cooling system, the temperature and radial thermal deformation decrease. When the diameter is 10 mm, the temperature and radial thermal deformation are lower than the spiral cooling system. And as the flow rate increases, the temperature and radial thermal deformation gradually decrease, which provides a basis for a reasonable choice of water flow rate. The maximum error between experiment and simulation is 2°C, and the error is small, which verifies the accuracy and lays the foundation for future research.


Sign in / Sign up

Export Citation Format

Share Document