Green manure incorporation accelerates enzyme activity, plant growth, and changes in the fungal community of soil

2021 ◽  
Vol 204 (1) ◽  
Author(s):  
Waleed Asghar ◽  
Ryota Kataoka
Forests ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 758 ◽  
Author(s):  
Saiyaremu Halifu ◽  
Xun Deng ◽  
Xiaoshuang Song ◽  
Ruiqing Song

Trichoderma spp. are proposed as major plant growth-promoting fungi that widely exist in the natural environment. These strains have the abilities of rapid growth and reproduction and efficient transformation of soil nutrients. Moreover, they can change the plant rhizosphere soil environment and promote plant growth. Pinus sylvestris var. mongolica has the characteristics of strong drought resistance and fast growth and plays an important role in ecological construction and environmental restoration. The effects on the growth of annual seedlings, root structure, rhizosphere soil nutrients, enzyme activity, and fungal community structure of P. sylvestris var. mongolica were studied after inoculation with Trichoderma harzianum E15 and Trichoderma virens ZT05, separately. The results showed that after inoculation with T. harzianum E15 and T. virens ZT05, seedling biomass, root structure index, soil nutrients, and soil enzyme activity were significantly increased compared with the control (p < 0.05). There were significant differences in the effects of T. harzianum E15 and T. virens ZT05 inoculation on the growth and rhizosphere soil nutrient of P. sylvestris var. mongolica (p < 0.05). For the E15 treatment, the seedling height, ground diameter, and total biomass of seedlings were higher than that those of the ZT05 treatment, and the rhizosphere soil nutrient content and enzyme activity of the ZT05 treatment were higher than that of the E15 treatment. The results of alpha and beta diversity analyses showed that the fungi community structure of rhizosphere soil was significantly different (p < 0.05) among the three treatments (inoculated with T. harzianum E15, T. virens ZT05, and not inoculated with Trichoderma). Overall, Trichoderma inoculation was correlated with the change of rhizosphere soil nutrient content.


2014 ◽  
Vol 37 (4) ◽  
pp. 498-508 ◽  
Author(s):  
Xiefeng Ye ◽  
Hongen Liu ◽  
Zheng Li ◽  
Yong Wang ◽  
Yingyuan Wang ◽  
...  

2021 ◽  
Vol 71 (1) ◽  
Author(s):  
Jiaxi Zhou ◽  
Lifei Yu ◽  
Jian Zhang ◽  
Jing Liu ◽  
Xiao Zou

Abstract Purpose Microorganisms are important in tobacco aging. These are used to improve the quality of tobacco leaves after threshing and redrying. However, the response of microbial community to the storage environment and time during the tobacco aging process has been less explored. This study aimed to characterize the dynamic changes in microbial community composition and diversity in tobacco leaf samples. Methods In this study, 16S and ITS rRNA gene amplicon sequencing techniques were used to characterize the composition, diversity, and co-occurrence of the microbial community in tobacco leaves stored in two different cities during the 24-month aging. Furthermore, the activities of several enzymes were measured spectrophotometrically, and the correlation between the microbiota and enzyme activity was analyzed by network analysis. Results Shannon diversity and Chao richness of bacterial communities gradually increased during the first 18 months, whereas those of the fungal community decreased. The relative abundance of Proteobacteria decreased, whereas that of Actinobacteria and Bacteroidetes increased. The proportion of Ascomycota gradually increased during the first 18 months and then rapidly decreased, whereas the proportion of Basidiomycota exhibited a completely opposite pattern. The change in the composition of bacterial community and dominant genera in leaves was not significant between Guiyang city and Maotai city storerooms, but that in the fungal community was significant. The network analysis revealed that fungal networks were more complex and compact than bacterial networks, and a strong negative correlation existed between bacteria and fungi. Moreover, the bacterial microbiome showed a strong positive association with amylase activity, while the fungal microbiome positively correlated with cellulase activity. Conclusions This study demonstrated a significant spatiotemporal heterogeneity in the composition of the microbial community during tobacco aging and highlighted the possible influence of the interactions and enzyme activity on microbial diversity and composition. The findings provided a scientific basis for using microorganisms to regulate and control tobacco aging.


Sign in / Sign up

Export Citation Format

Share Document