scholarly journals Quantum Channels with Quantum Group Symmetry

Author(s):  
Hun Hee Lee ◽  
Sang-Gyun Youn
2020 ◽  
pp. 676-743
Author(s):  
Giuseppe Mussardo

The Ising model in a magnetic field is one of the most beautiful examples of an integrable model. This chapter presents its exact S-matrix and the exact spectrum of its excitations, which consist of eight particles of different masses. Similarly, it discusses the exact scattering theory behind the thermal deformation of the tricritical Ising model and the unusual features of the exact S-matrix of the non-unitary Yang–Lee model. Other examples are provided by O(n) invariant models, including the important Sine–Gordon model. It also discusses multiple poles, magnetic deformation, the E 8 Toda theory, bootstrap fusion rules, non-relativistic limits and quantum group symmetry of the Sine–Gordon model.


1995 ◽  
Vol 451 (1-2) ◽  
pp. 445-465 ◽  
Author(s):  
G.W. Delius
Keyword(s):  

2009 ◽  
Vol 24 (25n26) ◽  
pp. 4623-4641 ◽  
Author(s):  
MICHELE ARZANO ◽  
DARIO BENEDETTI

Noncommutative quantum field theories and their global quantum group symmetries provide an intriguing attempt to go beyond the realm of standard local quantum field theory. A common feature of these models is that the quantum group symmetry of their Hilbert spaces induces additional structure in the multiparticle states which reflects a nontrivial momentum-dependent statistics. We investigate the properties of this "rainbow statistics" in the particular context of κ-quantum fields and discuss the analogies/differences with models with twisted statistics.


1994 ◽  
Vol 09 (05) ◽  
pp. 451-458 ◽  
Author(s):  
HARU-TADA SATO

We find a quantum group structure in two-dimensional motions of a nonrelativistic electron in a uniform magnetic field and in a periodic potential. The representation basis of the quantum algebra is composed of wave functions of the system. The quantum group symmetry commutes with the Hamiltonian and is relevant to the Landau level degeneracy. The deformation parameter q of the quantum algebra turns out to be given by the fractional filling factor v=1/m (m odd integer).


1998 ◽  
Vol 13 (24) ◽  
pp. 4147-4161 ◽  
Author(s):  
LUDWIK DABROWSKI ◽  
FABRIZIO NESTI ◽  
PASQUALE SINISCALCO

The 27-dimensional Hopf algebra A(F), defined by the exact sequence of quantum groups [Formula: see text], [Formula: see text], is studied as a finite quantum group symmetry of the matrix algebra [Formula: see text], describing the color sector of Alain Connes' formulation of the Standard Model. The duality with the Hopf algebra ℋ, investigated in a recent work by Robert Coquereaux, is established and used to define a representation of ℋ on [Formula: see text] and two commuting representation of ℋ on A(F).


Sign in / Sign up

Export Citation Format

Share Document