scholarly journals The $$\mu $$-Darboux transformation of minimal surfaces

2019 ◽  
Vol 162 (3-4) ◽  
pp. 537-558
Author(s):  
K. Leschke ◽  
K. Moriya

Abstract The classical notion of the Darboux transformation of isothermic surfaces can be generalised to a transformation for conformal immersions. Since a minimal surface is Willmore, we can use the associated $$\mathbb { C}_*$$C∗-family of flat connections of the harmonic conformal Gauss map to construct such transforms, the so-called $$\mu $$μ-Darboux transforms. We show that a $$\mu $$μ-Darboux transform of a minimal surface is not minimal but a Willmore surface in 4-space. More precisely, we show that a $$\mu $$μ-Darboux transform of a minimal surface f is a twistor projection of a holomorphic curve in $$\mathbb { C}\mathbb { P}^3$$CP3 which is canonically associated to a minimal surface $$f_{p,q}$$fp,q in the right-associated family of f. Here we use an extension of the notion of the associated family $$f_{p,q}$$fp,q of a minimal surface to allow quaternionic parameters. We prove that the pointwise limit of Darboux transforms of f is the associated Willmore surface of f at $$\mu =1$$μ=1. Moreover, the family of Willmore surfaces $$\mu $$μ-Darboux transforms, $$\mu \in \mathbb { C}_*$$μ∈C∗, extends to a $$\mathbb { C}\mathbb { P}^1$$CP1 family of Willmore surfaces $$f^\mu : M \rightarrow S^4$$fμ:M→S4 where $$\mu \in \mathbb { C}\mathbb { P}^1$$μ∈CP1.

2000 ◽  
Vol 11 (07) ◽  
pp. 911-924 ◽  
Author(s):  
EMILIO MUSSO ◽  
LORENZO NICOLODI

We study an analogue of the classical Bäcklund transformation for L-isothermic surfaces in Laguerre geometry, the Bianchi–Darboux transformation. First we show how to construct the Bianchi–Darboux transforms of an L-isothermic surface by solving an integrable linear differential system, then we establish a permutability theorem for iterated Bianchi–Darboux transforms.


2020 ◽  
pp. 1-25
Author(s):  
JOSEF F. DORFMEISTER ◽  
PENG WANG

A Willmore surface $y:M\rightarrow S^{n+2}$ has a natural harmonic oriented conformal Gauss map $Gr_{y}:M\rightarrow SO^{+}(1,n+3)/SO(1,3)\times SO(n)$ , which maps each point $p\in M$ to its oriented mean curvature 2-sphere at $p$ . An easy observation shows that all conformal Gauss maps of Willmore surfaces satisfy a restricted nilpotency condition, which will be called “strongly conformally harmonic.” The goal of this paper is to characterize those strongly conformally harmonic maps from a Riemann surface $M$ to $SO^{+}(1,n+3)/SO^{+}(1,3)\times SO(n)$ , which are the conformal Gauss maps of some Willmore surface in $S^{n+2}.$ It turns out that generically, the condition of being strongly conformally harmonic suffices to be associated with a Willmore surface. The exceptional case will also be discussed.


Author(s):  
Alexander I Bobenko ◽  
Yuri B Suris

We give an elaborated treatment of discrete isothermic surfaces and their analogues in different geometries (projective, Möbius, Laguerre and Lie). We find the core of the theory to be a novel characterization of discrete isothermic nets as Moutard nets. The latter are characterized by the existence of representatives in the space of homogeneous coordinates satisfying the discrete Moutard equation. Moutard nets admit also a projective geometric characterization as nets with planar faces with a five-point property: a vertex and its four diagonal neighbours span a three-dimensional space. Restricting the projective theory to quadrics, we obtain Moutard nets in sphere geometries. In particular, Moutard nets in Möbius geometry are shown to coincide with discrete isothermic nets. The five-point property, in this particular case, states that a vertex and its four diagonal neighbours lie on a common sphere, which is a novel characterization of discrete isothermic surfaces. Discrete Laguerre isothermic surfaces are defined through the corresponding five-plane property, which requires that a plane and its four diagonal neighbours share a common touching sphere. Equivalently, Laguerre isothermic surfaces are characterized by having an isothermic Gauss map. S-isothermic surfaces as an instance of Moutard nets in Lie geometry are also discussed.


1991 ◽  
Vol 44 (3) ◽  
pp. 397-404
Author(s):  
Shinji Yamashita

Let D be a domain in the complex ω-plane and let x: D → R3 be a regular minimal surface. Let M(K) be the set of points ω0 ∈ D where the Gauss curvature K attains local minima: K(ω0) ≤ K(ω) for |ω – ω0| < δ(ω0), δ(ω0) < 0. The components of M(K) are of three types: isolated points; simple analytic arcs terminating nowhere in D; analytic Jordan curves in D. Components of the third type are related to the Gauss map.


1991 ◽  
Vol 124 ◽  
pp. 13-40 ◽  
Author(s):  
Hirotaka Fujimoto

In [5], the author proved that the Gauss map of a nonflat complete minimal surface immersed in R3 can omit at most four points of the sphere, and in [7] he revealed some relations between this result and the defect relation in Nevanlinna theory on value distribution of meromorphic functions. Afterwards, Mo and Osserman obtained an improvement of these results in their paper [11], which asserts that if the Gauss map of a nonflat complete minimal surface M immersed in R3 takes on five distinct values only a finite number of times, then M has finite total curvature. The author also gave modified defect relations for holomorphic maps of a Riemann surface with a complete conformai metric into the n-dimensional complex projective space Pn(C) and, as its application, he showed that, if the (generalized) Gauss map G of a complete minimal surface M immersed in Rm is nondegenerate, namely, the image G(M) is not contained in any hyperplane in Pm − 1(C), then it can omit at most m(m + 1)/2 hyperplanes in general position ([8]). Here, the number m(m + 1)/2 is best-possible for arbitrary odd numbers and some small even numbers m (see [6]). Recently, Ru showed that the “nondegenerate” assumption of the above result can be dropped ([13]). In this paper, we shall introduce a new definition of modified defect and prove a refined Modified defect relation. As its application, we shall give some improvements of the above-mentioned results in [5], [7], [8], [11] and [13].


Author(s):  
Nicolas Marque

Abstract In this paper, we build an explicit example of a minimal bubble on a Willmore surface, showing there cannot be compactness for Willmore immersions of Willmore energy above $16 \pi $. Additionally, we prove an inequality on the 2nd residue for limits of sequences of Willmore immersions with simple minimal bubbles. Doing so, we exclude some gluing configurations and prove compactness for immersed Willmore tori of energy below $12 \pi $.


Sign in / Sign up

Export Citation Format

Share Document