scholarly journals An overview of drive systems and sealing types in stirred bioreactors used in biotechnological processes

2021 ◽  
Vol 105 (6) ◽  
pp. 2225-2242
Author(s):  
Cedric Schirmer ◽  
Rüdiger W. Maschke ◽  
Ralf Pörtner ◽  
Dieter Eibl

AbstractNo matter the scale, stirred tank bioreactors are the most commonly used systems in biotechnological production processes. Single-use and reusable systems are supplied by several manufacturers. The type, size, and number of impellers used in these systems have a significant influence on the characteristics and designs of bioreactors. Depending on the desired application, classic shaft-driven systems, bearing-mounted drives, or stirring elements that levitate freely in the vessel may be employed. In systems with drive shafts, process hygiene requirements also affect the type of seal used. For sensitive processes with high hygienic requirements, magnetic-driven stirring systems, which have been the focus of much research in recent years, are recommended. This review provides the reader with an overview of the most common agitation and seal types implemented in stirred bioreactor systems, highlights their advantages and disadvantages, and explains their possible fields of application. Special attention is paid to the development of magnetically driven agitators, which are widely used in reusable systems and are also becoming more and more important in their single-use counterparts.Key Points• Basic design of the most frequently used bioreactor type: the stirred tank bioreactor• Differences in most common seal types in stirred systems and fields of application• Comprehensive overview of commercially available bioreactor seal types• Increased use of magnetically driven agitation systems in single-use bioreactors

2017 ◽  
Vol 120 ◽  
pp. 49-62 ◽  
Author(s):  
Tristan Lawson ◽  
Daniel E. Kehoe ◽  
Aletta C. Schnitzler ◽  
Peter J. Rapiejko ◽  
Kara A. Der ◽  
...  

Biotecnia ◽  
2019 ◽  
Vol 22 (1) ◽  
pp. 126-134
Author(s):  
José Luis Espinoza-Acosta

Agricultural residues valorization has been an important issue over the last decades. Agricultural crop waste is an abundant, non-food, renewable, and low-cost feedstock to obtain attractive products for the food industry. The interest in replacing food ingredients such as artificial sweeteners with these obtained by biotechnological processes has grown in recent years, due to consumer’s high demand for low-calories foods and beverages without sacrificing taste. Several types of low caloric sweeteners are being obtained from the biotransformation of agricultural residues, with xylitol above all, for environmental, economic, and nutritional reasons. In recent years, the conversion of hydrolyzed agricultural residues into xylitol using enzymes, yeasts, and fungi has shown significant advances, although there are still many problems to be solved. This review presents the main advances in the use of microorganisms, substrates, and process conditions for the biotransformation of agricultural residues to xylitol. Besides, the main advantages and disadvantages of xylitol obtained by biotechnological routes compared to traditional chemical routes are discussed.RESUMENLa valorización de residuos agrícolas ha sido un tema importante en las últimas décadas. Los desechos de cultivos agrícolas son una materia prima abundante, no alimenticia, renovable y de bajo costo útil para obtener productos atractivos para la industria alimenticia. El interés por reemplazar ingredientes alimenticios de origen sintético por aquellos obtenidos por procesos biotecnológicos ha crecido en los últimos años debido a la gran demanda de los consumidores por los alimentos y bebidas con bajo contenido calórico sin sacrificar el sabor. Varios tipos de edulcorantes de bajo contenido calórico se han obteniendo a partir de la biotransformación de residuos agrícolas, destacando de todos ellos el xilitol por razones ecológicas, económicas y nutricionales. En los últimos años, la conversión de hidrolizados de residuos agrícolas en xilitol utilizando enzimas, levaduras y hongos ha mostrado avances importantes, aunque aún existen muchos problemas por resolver. En esta revisión se presentan los principales avances en el uso de microorganismos, sustratos y condiciones de proceso para la biotransformación de residuos agrícolas en xilitol. Además, se discuten las principales ventajas y desventajas del xilitol obtenido por rutas biotecnológicas comparado con las rutas químicas tradicionales.


2015 ◽  
Vol 9 (S9) ◽  
Author(s):  
Byron Rees ◽  
John Thompson ◽  
Bojan Isailovic ◽  
Kerem Irfan ◽  
Camille Segarra

2015 ◽  
Vol 9 (S9) ◽  
Author(s):  
Kerem Irfan ◽  
Byron Rees ◽  
Tim Barrett ◽  
Bojan Markicevic ◽  
Camille Segarra

2021 ◽  
pp. 0734242X2110031
Author(s):  
Ana Pires ◽  
Paula Sobral

A complete understanding of the occurrence of microplastics and the methods to eliminate their sources is an urgent necessity to minimize the pollution caused by microplastics. The use of plastics in any form releases microplastics to the environment. Existing policy instruments are insufficient to address microplastics pollution and regulatory measures have focussed only on the microbeads and single-use plastics. Fees on the use of plastic products may possibly reduce their usage, but effective management of plastic products at their end-of-life is lacking. Therefore, in this study, the microplastic–failure mode and effect analysis (MP–FMEA) methodology, which is a semi-qualitative approach capable of identifying the causes and proposing solutions for the issue of microplastics pollution, has been proposed. The innovative feature of MP–FMEA is that it has a pre-defined failure mode, that is, the release of microplastics to air, water and soil (depending on the process) or the occurrence of microplastics in the final product. Moreover, a theoretical recycling plant case study was used to demonstrate the advantages and disadvantages of this method. The results revealed that MP–FMEA is an easy and heuristic technique to understand the failure-effect-causes and solutions for reduction of microplastics and can be applied by researchers working in different domains apart from those relating to microplastics. Future studies can include the evaluation of the use of MP–FMEA methodology along with quantitative methods for effective reduction in the release of microplastics.


Sign in / Sign up

Export Citation Format

Share Document