Metagenomic analysis of gut microbiome reveals a dynamic change in Alistipes onderdonkii in the preclinical model of pancreatic cancer, suppressing its proliferation

Author(s):  
Kihak Lee ◽  
Hyo Jae Oh ◽  
Min-Su Kang ◽  
Sinae Kim ◽  
Sehee Ahn ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alissa Hendricks-Wenger ◽  
Kenneth N. Aycock ◽  
Margaret A. Nagai-Singer ◽  
Sheryl Coutermarsh-Ott ◽  
Melvin F. Lorenzo ◽  
...  

AbstractNew therapies to treat pancreatic cancer are direly needed. However, efficacious interventions lack a strong preclinical model that can recapitulate patients’ anatomy and physiology. Likewise, the availability of human primary malignant tissue for ex vivo studies is limited. These are significant limitations in the biomedical device field. We have developed RAG2/IL2RG deficient pigs using CRISPR/Cas9 as a large animal model with the novel application of cancer xenograft studies of human pancreatic adenocarcinoma. In this proof-of-concept study, these pigs were successfully generated using on-demand genetic modifications in embryos, circumventing the need for breeding and husbandry. Human Panc01 cells injected subcutaneously into the ears of RAG2/IL2RG deficient pigs demonstrated 100% engraftment with growth rates similar to those typically observed in mouse models. Histopathology revealed no immune cell infiltration and tumor morphology was highly consistent with the mouse models. The electrical properties and response to irreversible electroporation of the tumor tissue were found to be similar to excised human pancreatic cancer tumors. The ample tumor tissue produced enabled improved accuracy and modeling of the electrical properties of tumor tissue. Together, this suggests that this model will be useful and capable of bridging the gap of translating therapies from the bench to clinical application.


Pancreatology ◽  
2021 ◽  
Vol 21 ◽  
pp. S68-S69
Author(s):  
T. Kaune ◽  
H. Griesmann ◽  
K. Theuerkorn ◽  
M. Hämmerle ◽  
L. Borges ◽  
...  

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A445-A445
Author(s):  
Ruyi Zhang ◽  
Xiaoxuan Tu ◽  
Zhou Tong ◽  
Hangyu Zhang ◽  
Xudong Zhu ◽  
...  

BackgroundIn recent years, the role of inflammatory microenvironment induced by gut microbiome in the occurrence and development of CRC has received increased attention across a number of disciplines. WLS is a probiotics product consisted of with 6 billion live probiotics, mainly Lactobacillus helveticus and Bifidobacterium longum. To further explore the influence of gut microbiome in the anti-tumor efficacy of patients with mCRC, we conducted a randomized controlled trial (NCT04021589).MethodsPatients receiving corresponding systemic therapy were randomly included into the WLS-intervention and the control arms. Fecal samples were collected at baseline and about two months after treatment initiation. Gut microbiota composition was assessed using shotgun metagenomic sequencing. Best clinical response was dichotomized as partial remission (clinical benefit, CB) versus stable disease or disease progression (non-clinical benefit, NCB). Metagenomic analysis across patients with CB and NCB was conducted and random forest model training was employed to predict the efficacy of treatment.Abstract 414 Figure 1Metabolic pathways for differential enrichment. Metabolic pathways for differential enrichment of the gut microbiome genome in microbiota preparation group through KEGG analysisResultsA total of 40 patients with mCRC in two tertiary hospitals were enrolled. Dynamic metagenomic analysis indicated that during systemic treatment, the a diversity of the gut microbiome were all decreased in both arms. It has been reported that higher a diversity is associated with a better prognosis, while the degree of decline in WLS-intervention group was a relatively minor change. GO enrichment analysis of differential genes indicated a strong enrichment for genes related to lipid metabolism after WLS intervention (figure 1; p<0.01). Lipopolysaccharide (LPS) could regulate the accumulation of monocyte-like macrophages and promote the inflammatory microenvironment in a chemokine-dependent manner, while WLS intervention down-regulated genes related to its synthesis pathway, which may slow the development of CRC. Random forest model showed abundance of Desulfovibrio_vulgaris and Parvimonas_sp._oral_taxon_393 predominantly discriminated between CB and NCB. They were then used to construct a classifier, which achieved an AUC of 0.95 for efficacy prediction.ConclusionsThis prospective randomized pilot study provided insights for influence of the gut microbiome with probiotics in mCRC. WLS could maintain intestinal microecological balance of patients with mCRC by decreasing the degree of abundance of gut microbiome fall after chemotherapy and down-regulating lipopolysaccharide metabolism-related pathway. We established a novel classifier that accurately distinguished between patients with CB and NCB on systemic therapy.Trial RegistrationNCT04021589Ethics ApprovalThis study has been approved by Clinical Research Ethics Committee of the First Affiliated Hospital, College of Medicine, Zhejiang University. Acceptance number: IIT20200348A-R1


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Wenjun Liu ◽  
Jiachao Zhang ◽  
Chunyan Wu ◽  
Shunfeng Cai ◽  
Weiqiang Huang ◽  
...  

Author(s):  
Giorgio Casaburi ◽  
Rebbeca Duar ◽  
Heather K. Brown ◽  
Ryan Mitchell ◽  
Sufyan Kazi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document