Climate response of the south Asian monsoon system to West Asia, Tibetan Plateau and local dust emissions

2019 ◽  
Vol 53 (9-10) ◽  
pp. 6245-6264 ◽  
Author(s):  
Charu Singh ◽  
Dilip Ganguly ◽  
Puneet Sharma ◽  
Shiwansha Mishra
2012 ◽  
Vol 117 (D13) ◽  
pp. n/a-n/a ◽  
Author(s):  
Dilip Ganguly ◽  
Philip J. Rasch ◽  
Hailong Wang ◽  
Jin-Ho Yoon

2013 ◽  
Vol 9 (4) ◽  
pp. 5019-5036
Author(s):  
G.-S. Chen ◽  
Z. Liu ◽  
J. E. Kutzbach

Abstract. The Tibetan Plateau has been conventionally treated as an elevated heat source driving the Asian monsoon system, especially for the South Asian monsoon. Numerous model simulations with general circulation models (GCMs) support this hypothesis with the finding that the Asian monsoon system is weak or absent with all elevated topographies removed. A recent model simulation shows that the South Asian summer monsoon circulation is little affected with only the Himalayas (no Tibetan Plateau) kept as a barrier, leading to a hypothesis of the barrier "blocking" mechanism of the Tibetan Plateau. In this paper, a new series of experiments are designed to reexamine this barrier effect. We find that with the barrier, the large-scale summer monsoon circulation over South Asia is simulated in general agreement with the full Tibetan Plateau, which is consistent with the previous finding. However there remains significant differences in both wind field and precipitation field elsewhere, suggesting a role of the full Tibetan Plateau as well. Moreover, the proposed barrier "blocking" mechanism is not found in our experiments. The energy of the low-level air and the convection is lower/weaker over the Indian subcontinent in the full Tibetan Plateau experiment than that in the no-Tibetan Plateau experiment or the barrier only experiment, which is opposite to the barrier "blocking" hypothesis. Instead, there is a similar candle-like latent heating in the middle troposphere along the south edge of the Tibetan Plateau in both the full Tibetan Plateau and the barrier experiments, whereas this "candle heating" disappears in the no-Tibetan Plateau experiment. We propose that this candle heating is the key to understand the mechanisms of the Tibetan Plateau on the South Asian monsoon. Future studies are needed to check the source of the "candle heating" and its effect on the Asian monsoon.


2019 ◽  
Author(s):  
Stefan Rahimi ◽  
Xiaohong Liu ◽  
Chenglai Wu ◽  
William K. Lau ◽  
Hunter Brown ◽  
...  

Abstract. Black carbon (BC) and dust impart significant effects on the south-Asian monsoon (SAM), which is responsible for ~80 % of the region’s annual precipitation. This study implements a variable-resolution (VR) version of Community Earth System Model (CESM) to quantify the impacts of absorbing BC and dust on the SAM. This study focuses on the snow darkening effect (SDE), as well as how these aerosols interact with incoming and outgoing radiation to facilitate an atmospheric response (i.e., aerosol radiation interactions (ARI)). By running sensitivity experiments, the individual effects of SDE and ARI are quantified, and a theoretical framework is applied to assess these aerosols’ impacts on the SAM. It is found that ARI of absorbing aerosols warm the atmospheric column in a belt coincident with the May-June averaged location of the subtropical jet, bringing forth anomalous upper-tropospheric (lower-tropospheric) anticyclogenesis (cyclogenesis) and divergence (convergence). This anomalous arrangement in the mass fields brings forth enhanced rising vertical motion across south Asia and a stronger westerly low-level jet, the latter of which furnishes the Indian subcontinent with enhanced Arabian Gulf moisture. This leads to precipitation increases of +2 mm d−1 or more across much of northern India from May through August, with larger anomalies in the western Indian mountains and southern TP mountain ranges due to orographic and anabatic enhancement. Across the Tibetan Plateau foothills, SDE by BC aerosol drives large precipitation anomalies of >6 mm d−1, comparable to ARI of absorbing aerosols from April through August. Runoff changes accompany precipitation and Tibetan Plateau snow changes, which have consequences for south-Asian water resources.


2019 ◽  
Vol 19 (18) ◽  
pp. 12025-12049 ◽  
Author(s):  
Stefan Rahimi ◽  
Xiaohong Liu ◽  
Chenglai Wu ◽  
William K. Lau ◽  
Hunter Brown ◽  
...  

Abstract. Black carbon (BC) and dust impart significant effects on the South Asian monsoon (SAM), which is responsible for ∼80  % of the region's annual precipitation. This study implements a variable-resolution (VR) version of the Community Earth System Model (CESM) to quantify two radiative effects of absorbing BC and dust on the SAM. Specifically, this study focuses on the snow darkening effect (SDE), as well as how these aerosols interact with incoming and outgoing radiation to facilitate an atmospheric response (i.e., aerosol–radiation interactions, ARIs). By running sensitivity experiments, the individual effects of SDE and ARI are quantified, and a theoretical framework is applied to assess these aerosols' impacts on the SAM. It is found that ARIs of absorbing aerosols warm the atmospheric column in a belt coincident with the May–June averaged location of the subtropical jet, bringing forth anomalous upper-tropospheric (lower-tropospheric) anticyclogenesis (cyclogenesis) and divergence (convergence). This anomalous arrangement in the mass fields brings forth enhanced rising vertical motion across South Asia and a stronger westerly low-level jet, the latter of which furnishes the Indian subcontinent with enhanced Arabian Gulf moisture. Precipitation increases of 2 mm d−1 or more (a 60 % increase in June) result across much of northern India from May through August, with larger anomalies (+5 to +10 mm d−1) in the western Indian mountains and southern Tibetan Plateau (TP) mountain ranges due to orographic and anabatic enhancement. Across the Tibetan Plateau foothills, SDE by BC aerosols drives large precipitation anomalies of > 6 mm d−1 (a 21 %–26 % increase in May and June), comparable to ARI of absorbing aerosols from April through August. Runoff changes accompany BC SDE-induced snow changes across Tibet, while runoff changes across India result predominantly from dust ARI. Finally, there are large differences in the simulated SDE between the VR and traditional 1∘ simulations, the latter of which simulates a much stronger SDE and more effectively modifies the regional circulation.


2014 ◽  
Vol 10 (3) ◽  
pp. 1269-1275 ◽  
Author(s):  
G.-S. Chen ◽  
Z. Liu ◽  
J. E. Kutzbach

Abstract. The Tibetan Plateau has been conventionally treated as an elevated heat source driving the Asian monsoon system, especially for the South Asian monsoon. Numerous model simulations with general circulation models (GCMs) support this hypothesis with the finding that the Asian monsoon system is weak or absent when all elevated topography is removed. A recent model simulation shows that the South Asian summer monsoon circulation is little affected with only the Himalayas (no-Tibetan Plateau) kept as a barrier, leading to a hypothesis of the barrier "blocking" mechanism of the Tibetan Plateau. In this paper, a new series of experiments are designed to reexamine this barrier effect. We find that with the barrier, the large-scale summer monsoon circulation over South Asia is simulated in general agreement with the full Tibetan Plateau, which is consistent with the previous finding. However, there remains significant differences in both wind and precipitation fields, suggesting a role for the full Tibetan Plateau as well. Moreover, the proposed barrier blocking mechanism is not found in our experiments. The energy of the low-level air and the convection are lower and weaker over the Indian subcontinent in the full Tibetan Plateau experiment than that in the no-Tibetan Plateau experiment or the barrier only experiment, which is in contrast to the barrier blocking hypothesis. Instead, there is a similar candle-like latent heating in the middle troposphere along the southern edge of the Tibetan Plateau in both the full Tibetan Plateau and the barrier experiments, whereas this "candle heating" disappears in the no-Tibetan Plateau experiment. We propose that this candle heating is the key to understanding the mechanisms of the Tibetan Plateau on the South Asian monsoon. Future studies are needed to check the source of the "candle heating" and its effect on the Asian monsoon.


2014 ◽  
Vol 15 (1) ◽  
pp. 229-242 ◽  
Author(s):  
Marco Lomazzi ◽  
Dara Entekhabi ◽  
Joaquim G. Pinto ◽  
Giorgio Roth ◽  
Roberto Rudari

Abstract The summer monsoon season is an important hydrometeorological feature of the Indian subcontinent and it has significant socioeconomic impacts. This study is aimed at understanding the processes associated with the occurrence of catastrophic flood events. The study has two novel features that add to the existing body of knowledge about the South Asian monsoon: 1) it combines traditional hydrometeorological observations (rain gauge measurements) with unconventional data (media and state historical records of reported flooding) to produce value-added century-long time series of potential flood events and 2) it identifies the larger regional synoptic conditions leading to days with flood potential in the time series. The promise of mining unconventional data to extend hydrometeorological records is demonstrated in this study. The synoptic evolution of flooding events in the western-central coast of India and the densely populated Mumbai area are shown to correspond to active monsoon periods with embedded low pressure centers and have far-upstream influences from the western edge of the Indian Ocean basin. The coastal processes along the Arabian Peninsula where the currents interact with the continental shelf are found to be key features of extremes during the South Asian monsoon.


Sign in / Sign up

Export Citation Format

Share Document