scholarly journals Limbic links to paranoia: increased resting-state functional connectivity between amygdala, hippocampus and orbitofrontal cortex in schizophrenia patients with paranoia

Author(s):  
Sebastian Walther ◽  
Stephanie Lefebvre ◽  
Frauke Conring ◽  
Nicole Gangl ◽  
Niluja Nadesalingam ◽  
...  

AbstractParanoia is a frequent and highly distressing experience in psychosis. Models of paranoia suggest limbic circuit pathology. Here, we tested whether resting-state functional connectivity (rs-fc) in the limbic circuit was altered in schizophrenia patients with current paranoia. We collected MRI scans in 165 subjects including 89 patients with schizophrenia spectrum disorders (schizophrenia, schizoaffective disorder, brief psychotic disorder, schizophreniform disorder) and 76 healthy controls. Paranoia was assessed using a Positive And Negative Syndrome Scale composite score. We tested rs-fc between bilateral nucleus accumbens, hippocampus, amygdala and orbitofrontal cortex between groups and as a function of paranoia severity. Patients with paranoia had increased connectivity between hippocampus and amygdala compared to patients without paranoia. Likewise, paranoia severity was linked to increased connectivity between hippocampus and amygdala. Furthermore, paranoia was associated with increased connectivity between orbitofrontal and medial prefrontal cortex. In addition, patients with paranoia had increased functional connectivity within the frontal hubs of the default mode network compared to healthy controls. These results demonstrate that current paranoia is linked to aberrant connectivity within the core limbic circuit and prefrontal cortex reflecting amplified threat processing and impaired emotion regulation. Future studies will need to explore the association between limbic hyperactivity, paranoid ideation and perceived stress.

2020 ◽  
Author(s):  
Isabel M. Berwian ◽  
Julia G. Wenzel ◽  
Leonie Kuehn ◽  
Inga Schnuerer ◽  
Lars Kasper ◽  
...  

AbstractThe risk of relapsing into depression after stopping antidepressants is high, but no established predictors exist. Resting-state functional magnetic resonance imaging (rsfMRI) measures may help predict relapse and identify the mechanisms by which relapses occur. rsfMRI data were acquired from healthy controls and from patients with remitted major depressive disorder on antidepressants. Patients were assessed a second time either before or after discontinuation of the antidepressant, and followed up for six months to assess relapse. A seed-based functional connectivity analysis was conducted focusing on the left subgenual anterior cingulate cortex and left posterior cingulate cortex. Seeds in the amygdala and dorsolateral prefrontal cortex were explored. 44 healthy controls (age: 33.8 (10.5), 73% female) and 84 patients (age: 34.23 (10.8), 80% female) were included in the analysis. 29 patients went on to relapse and 38 remained well. The seed-based analysis showed that discontinuation resulted in an increased functional connectivity between the right dorsolateral prefrontal cortex and the parietal cortex in non-relapsers. In an exploratory analysis, this functional connectivity predicted relapse risk with a balanced accuracy of 0.86. Further seed-based analyses, however, failed to reveal differences in functional connectivity between patients and controls, between relapsers and non-relapsers before discontinuation and changes due to discontinuation independent of relapse. In conclusion, changes in the connectivity between the dorsolateral prefrontal cortex and the posterior default mode network were associated with and predictive of relapse after open-label antidepressant discontinuation. This finding requires replication in a larger dataset.


2021 ◽  
Vol 12 ◽  
Author(s):  
Eisuke Sakakibara ◽  
Yoshihiro Satomura ◽  
Jun Matsuoka ◽  
Shinsuke Koike ◽  
Naohiro Okada ◽  
...  

Near-infrared spectroscopy (NIRS) is a functional neuroimaging modality that has advantages in clinical usage. Previous functional magnetic resonance imaging (fMRI) studies have found that the resting-state functional connectivity (RSFC) of the default mode network (DMN) is increased, while the RSFC of the cognitive control network (CCN) is reduced in patients with major depressive disorder (MDD) compared with healthy controls. This study tested whether the NIRS-based RSFC measurements can detect the abnormalities in RSFC that have been associated with MDD in previous fMRI studies. We measured 8 min of resting-state brain activity in 34 individuals with MDD and 78 age- and gender-matched healthy controls using a whole-head NIRS system. We applied a previously established partial correlation analysis for estimating RSFCs between the 17 cortical regions. We found that MDD patients had a lower RSFC between the left dorsolateral prefrontal cortex and the parietal lobe that comprise the CCN, and a higher RSFC between the right orbitofrontal cortex and ventrolateral prefrontal cortex, compared to those in healthy controls. The RSFC strength of the left CCN was negatively correlated with the severity of depressive symptoms and the dose of antipsychotic medication and positively correlated with the level of social functioning. The results of this study suggest that NIRS-based measurements of RSFCs have potential clinical applications.


2021 ◽  
Vol 10 (1) ◽  
pp. 88-98
Author(s):  
Soo-Jeong Kim ◽  
Min-Kyeong Kim ◽  
Yu-Bin Shin ◽  
Hesun Erin Kim ◽  
Jun Hee Kwon ◽  
...  

AbstractBackground and aimsImpulsiveness is an important factor in the pathophysiology of Internet gaming disorder (IGD), and regional brain functions can be different depending on the level of impulsiveness. This study aimed to demonstrate that different brain mechanisms are involved depending on the level of impulsiveness among patients with IGD.MethodsResting-state functional MRI data were obtained from 23 IGD patients with high impulsivity, 27 IGD patients with low impulsivity, and 22 healthy controls, and seed-based functional connectivity was compared among the three groups. The seed regions were the ventromedial prefrontal cortex (vmPFC), dorsolateral prefrontal cortex, nucleus accumbens (NAcc), and amygdala.ResultsConnectivity of the vmPFC with the left temporo-parietal junction (TPJ) and NAcc-left insula connectivity were significantly decreased in the patients with high impulsivity, compared with the patients with low impulsivity and healthy controls. On the other hand, amygdala-based connectivity with the left inferior frontal gyrus showed decreases in both patient groups, compared with the healthy controls.ConclusionThese findings may suggest a potential relationship between impulsivity and deficits in reward-related social cognition processes in patients with IGD. In particular, certain interventions targeted at vmPFC-TPJ connectivity, found to be impulsivity-specific brain connectivity, are likely to help with addiction recovery among impulsive patients with IGD.


2021 ◽  
Vol 15 ◽  
Author(s):  
Huanhuan Li ◽  
Hu Liu ◽  
Yanqing Tang ◽  
Rongkai Yan ◽  
Xiaowei Jiang ◽  
...  

Objectives: To investigate changes in functional connectivity between the vermis and cerebral regions in the resting state among subjects with bipolar disorder (BD).Methods: Thirty participants with BD and 28 healthy controls (HC) underwent the resting state functional magnetic resonance imaging (fMRI). Resting-state functional connectivity (rsFC) of the anterior and posterior vermis was examined. For each participant, rsFC maps of the anterior and posterior vermis were computed and compared across the two groups.Results: rsFC between the whole vermis and ventral prefrontal cortex (VPFC) was significantly lower in the BD groups compared to the HC group, and rsFC between the anterior vermis and the middle cingulate cortex was likewise significantly decreased in the BD group.Limitations: 83.3% of the BD participants were taking medication at the time of the study. Our findings may in part be attributed to treatment differences because we did not examine the effects of medication on rsFC. Further, the mixed BD subtypes in our current study may have confounding effects influencing the results.Conclusions: These rsFC differences of vermis-VPFC between groups may contribute to the BD mood regulation.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Isabel M. Berwian ◽  
Julia G. Wenzel ◽  
Leonie Kuehn ◽  
Inga Schnuerer ◽  
Lars Kasper ◽  
...  

AbstractThe risk of relapsing into depression after stopping antidepressants is high, but no established predictors exist. Resting-state functional magnetic resonance imaging (rsfMRI) measures may help predict relapse and identify the mechanisms by which relapses occur. rsfMRI data were acquired from healthy controls and from patients with remitted major depressive disorder on antidepressants. Patients were assessed a second time either before or after discontinuation of the antidepressant, and followed up for six months to assess relapse. A seed-based functional connectivity analysis was conducted focusing on the left subgenual anterior cingulate cortex and left posterior cingulate cortex. Seeds in the amygdala and dorsolateral prefrontal cortex were explored. 44 healthy controls (age: 33.8 (10.5), 73% female) and 84 patients (age: 34.23 (10.8), 80% female) were included in the analysis. 29 patients went on to relapse and 38 remained well. The seed-based analysis showed that discontinuation resulted in an increased functional connectivity between the right dorsolateral prefrontal cortex and the parietal cortex in non-relapsers. In an exploratory analysis, this functional connectivity predicted relapse risk with a balanced accuracy of 0.86. Further seed-based analyses, however, failed to reveal differences in functional connectivity between patients and controls, between relapsers and non-relapsers before discontinuation and changes due to discontinuation independent of relapse. In conclusion, changes in the connectivity between the dorsolateral prefrontal cortex and the posterior default mode network were associated with and predictive of relapse after open-label antidepressant discontinuation. This finding requires replication in a larger dataset.


BJPsych Open ◽  
2021 ◽  
Vol 7 (S1) ◽  
pp. S49-S50
Author(s):  
Lydia Shackshaft

AimsSevere and Enduring Anorexia Nervosa (SE-AN) is a challenging condition to treat, with limited therapeutic options, high morbidity, and the highest mortality rates of any psychiatric illness. Repetitive Transcranial Magnetic Stimulation (rTMS) is an emerging treatment option, as evidence demonstrates promising efficacy in improving mood and reducing core Anorexia Nervosa symptoms, as well as safety and tolerability to patients. We aimed to investigate the neurophysiological mechanisms of rTMS use in SE-AN patients by assessing changes in resting state functional connectivity, in the first functional neuroimaging analysis investigating rTMS effects in Anorexia Nervosa patients.Method26 females with a current diagnosis of SE-AN received 20 sessions of sham or real high frequency rTMS (10 hertz) to the left dorsolateral prefrontal cortex in a randomised double-blind trial. Resting-state functional magnetic resonance imaging was performed before and after rTMS. Neural correlates of rTMS treatment were identified using a seed-based functional connectivity analysis with the left dorsolateral prefrontal cortex and bilateral amygdalae as regions of interest. Functional connectivity differences were analysed using t-contrasts in a mixed ANOVA (flexible factorial analysis) to assess interactions between treatment group (real rTMS vs sham) and time-point (pre or post TMS).ResultNo statistically significant changes in resting-state functional connectivity were observed post-rTMS compared to baseline in participants receiving active rTMS compared to sham. Increased functional connectivity between the left amygdala and left pre-supplementary motor area was observed to reach cluster-wise significance (PFWE < 0.05). However, after Bonferroni correction for multiple comparisons (3 seed regions), this did not reach the significance threshold PFWE <0.017.ConclusionThis study highlights the need for further investigation of neurophysiological mechanisms, including resting-state functional connectivity modulation, resulting from rTMS to the dorsolateral prefrontal cortex in SE-AN patients. This requires higher powered studies to account for heterogeneity in treatment response. We have provided some indication that high frequency rTMS may have therapeutic benefit in SE-AN by modification of functional connectivity between prefrontal and limbic brain regions, resulting in improved top-down cognitive control over emotional processing and ability to enact goal-directed behaviours, enabling secondary reductions in eating disorder behaviours.


2020 ◽  
Vol 14 ◽  
Author(s):  
Diego Szczupak ◽  
Cecil C. Yen ◽  
Cirong Liu ◽  
Xiaoguang Tian ◽  
Roberto Lent ◽  
...  

The corpus callosum, the principal structural avenue for interhemispheric neuronal communication, controls the brain’s lateralization. Developmental malformations of the corpus callosum (CCD) can lead to learning and intellectual disabilities. Currently, there is no clear explanation for these symptoms. Here, we used resting-state functional MRI (rsfMRI) to evaluate the dynamic resting-state functional connectivity (rsFC) in both the cingulate cortex (CG) and the sensory areas (S1, S2, A1) in three marmosets (Callithrix jacchus) with spontaneous CCD. We also performed rsfMRI in 10 CCD human subjects (six hypoplasic and four agenesic). We observed no differences in the strength of rsFC between homotopic CG and sensory areas in both species when comparing them to healthy controls. However, in CCD marmosets, we found lower strength of quasi-periodic patterns (QPP) correlation in the posterior interhemispheric sensory areas. We also found a significant lag of interhemispheric communication in the medial CG, suggesting asynchrony between the two hemispheres. Correspondingly, in human subjects, we found that the CG of acallosal subjects had a higher QPP correlation than controls. In comparison, hypoplasic subjects had a lower QPP correlation and a delay of 1.6 s in the sensory regions. These results show that CCD affects the interhemispheric synchrony of both CG and sensory areas and that, in both species, its impact on cortical communication varies along the CC development gradient. Our study shines a light on how CCD misconnects homotopic regions and opens a line of research to explain the causes of the symptoms exhibited by CCD patients and how to mitigate them.


2017 ◽  
Vol 174 ◽  
pp. 94-102 ◽  
Author(s):  
Sarael Alcauter ◽  
Liliana García-Mondragón ◽  
Zeus Gracia-Tabuenca ◽  
Martha B. Moreno ◽  
Juan J. Ortiz ◽  
...  

2019 ◽  
Vol 9 (6) ◽  
pp. 1095-1102
Author(s):  
Jian Yang ◽  
Xu Mao ◽  
Ning Liu ◽  
Ning Zhong

Resting-state functional connectivity (FC) changes dynamically and major depressive disorder (MDD) has abnormality in functional connectivity networks (FCNs), but few existing resting-state fMRI study on MDD utilizes the dynamics, especially for identifying depressive individuals from healthy controls. In this paper, we propose a methodological procedure for differential diagnosis of depression, called HN3D, which is based on high-order functional connectivity networks (HFCN). Firstly, HN3D extracts time series by independent component analysis, and partitions them into overlapped short series by sliding time window. Secondly, it constructs a FCN for each time window and concatenates correlation matrices of all FCNs to generate correlation time series. Then, correlation time series are grouped into different clusters and high-order correlations for HFCN is calculated based on their means. Finally, graph based features of HFCNs are extracted and selected for a linear discriminative classifier. Tested on 21 healthy controls and 20 MDD patients, HN3D achieved its best 100% classification accuracy, which is much higher than results based on stationary FCNs. In addition, most discriminative components of HN3D locate in default mode network and visual network, which are consistent with existing stationary-based results on depression. Though HN3D needs to be studied further, it is helpful for the differential diagnosis of depression and might have potentiality in identifying relevant biomarkers.


Sign in / Sign up

Export Citation Format

Share Document